
USGS-OFR-90-615 USGS-OFR-90-615

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

GEOTRANS:
An Interface Program from GEOPROGRAM to

a Geographic Information System

Steve P. Schilling

Open-File Report
90-615

Prepared in cooperation with the
Nevada Operations Office
U.S. Department of Energy

(Interagency Agreement DE-AI08-78ET44802)

No guarantee (expressed or implied) is made by the authors or the U.S. Geological
Survey regarding correctness, accuracy, or proper execution on all computer
systems.

Any use of trade names is for descriptive purposes only and does not imply
endorsement by the U.S. Geological Survey. This report is preliminary and has not
been reviewed for conformity with U.S Geological Survey editorial standards

Denver, Colorado
1991

Copies of this Open-File Report
 may be purchased from

Books and Open-File Reports Section
Branch of Distribution
U.S. Geological Survey

Box 25425 Federal Center
Denver, Colorado 80225

PREPAYMENT IS REQUIRED

Price information will be published
in the monthly listing

"New Publications of the Geological Survey"

FOR ADDITIONAL ORDERING INFORMATION

CALL: Commercial: (303)236-7476
FTS: 776-7476

TABLE OF CONTENTS

Abstract.. 1

Introduction... 1

Acknowledgments... 2

GeofUecommands... 2

Change to plot area.. 2

Change to label...|... 5

Change to line type ..J... 5

Change to cont <on> <off>4... 5

Change to smooth <on> <off>.......................,... 5

Change to pen number.. 5

Change to symbol type ..L... 5

Change to attitude..4... 6

Change to object... 6

Change to pen down .. h ... 6

Change to pen up... 6

KORK Geographic Information System... 6

Explanation of topology... 7

KGIS topologic definitions.. 7

Topologic features... 7

Cartographic features.. 10

Themes... 10

Geographic features..10

3D Topology.. 10

Procedural calls to the KGIS library... 11

Initialization procedures... 11

Translation procedures... 11

Themes... 12

Completion.. 14

Sending information to Oracle RDB... 14

GEOTRANS program... 16

KGIS database.. 16

Legend file... 16

Geofile... 16

Line type file... 16

Symbol type file.. 16

Proceeding with the translation... 16

Change to plot area.. 17

Change to label... 17

Change to line type.. 17

Cont <on><off>.. 17

Smooth <on> <off> ... 17

Change to pen number.. 17

Change to symbol type.. 18

Change to attitude.. 18

Change to object... 18

Change to pen down.. 18

Change to pen up... 19

Communicating progress to the user.. 19

Graphics screen procedures.. 19

Calls to the GEOPROGRAM library... 20

Calls to the VTIOO library...22

User's manual.. 22

Files needed for data translation to KGIS........

Files needed for data translation to ORACLE

Running GEOTRANS..

Summary ...

References cited ..

Appendix, program listing....................................

	ILLUSTRATIONS

Figure 1. Example of ageofile... 3

2. KGIS topologic terminology... 8

3. Hypothetical map with topologic building blocks..................................... 9

4. Examples of line and symbol type tables....4... 13

5. Format of the columns to st up an ORACLE table.................................. 15

6. Flow diagram of coordinate transformations during translation............ 21

,22

,23

,23

,25

,26

,27

IV

ABSTRACT

The U.S. Geological Survey Plotter Lab, Denver, Colorado, has created a
computer program to translate data from GEOPROGRAM recording files to a
geographic information system (GIS) and a relational database. The program,
GEOTRANS, takes files recorded on a Kern DSR 11 Analytical Plotter and
translates the coordinate information into the KORK Geographic Information
System (KGIS) and places the non-coordinate information into ORACLE, a
relational database program. The advantage of linking the data collection
capabilities of GEOPROGRAM with KGIS and ORACLE is to offer geologists a
means of merging, editing, and querying coordinate and relational databases on­
line.

GEOTRANS is written in Pascal v. 3.8 running under the DEC VMS
operating system on a Microvax II computer. The program is structured in such a
manner as to facilitate converting and restructuring of the program to translate 3D
coordinate and attribute data collected with an analytical plotter to either 3D or
other 2D GIS. This report describes how files from GEOPROGRAM are read,
how 2D topology is created, and how GEOTRANS procedures and various calls to
libraries transform and insert data to the proper place. A user's manual is included
to run GEOTRANS.

INTRODUCTION

A photogramnietric mapping system that incorporates GEOPROGRAM
software (Dueholm, 1989, Dueholm and Coe, 1989) with a KERN DSR 11
analytical plotter has been developed at the U.S. Geological Survey, Denver. The
system is needed for the planned mapping of geologic features from stereo
photographs that will be taken in exploratory shafts, in associated drifts, and in
trenches excavated to study structural features as part of the Yucca Mountain
Project at Yucca Mountain, Nevada (Interagency Agreement DE-AI08-78ET44802).
In addition, this system will be available for photo interpretation, mapping, and data
recording needs of other geologic projects.

Geologists use the GEOPROGRAM software and analytical plotter to
collect three-dimensional (3D) coordinates of geologic features from stereo
photographs such as, fault traces and strike and dip measurement locations. As
geologists make these measurements, GEOPROGRAM automatically stores
various parameters of geometric planes e.g., attitude measurements in a
planes_record file, and real world X, Y, and Z coordinates, e.g., state plane
coordinates, in a recording file (geofile). In addition, GEOPROGRAM also
records how the data was collected by storing command information in the geofile.
For example, commands indicate whether coordinates were collected point by point
or incrementally, whether lines should be splined or not when plotted, or defines
what symbol type should be plotted.

GEOPROGRAM is a data collection tool with limited editing capabilities.
The KORK Geographic Information System (KGIS) I KORK, 1988) combined with
the ORACLE relational database (RDB), is a tool wi ;h powerful database editing
capabilities, with the capacity to build large cohesive databases from small data sets,
with interactive on-screen database query, and with the ability to maintain two-
dimensional (2D) topology when projecting data to the screen. The unique
advantages offered by each of these tools led to the development of a reliable
means to move data collected in GEOPROGRAM to KGIS. The translation
program (GEOTRANS), written in VAX Pascal v. 3.8, running under VAX-VMS v.
5.0-2, translates and sends GEOPROGRAM coordinate data to KGIS for merging,
editing, and plotting. GEOTRANS also translates a variety of non-coordinate
attribute data (recorded in the planes_record file) to ORACLE RDB that may be
queried in KGIS.

ACKNOWLEDGMENTS

The author would like to acknowledge the assistance of Dr. Keld S.
Dueholm, Institute of Surveying and Photogrammetry, Technical University of
Denmark, Lyngby, Denmark, Mr. Kevin J. Ingram, formerly of Kork Systems, Inc.,
Bangor, Maine, and Mr. Jeffrey A. Coe, U.S. Geological Survey, Denver, Colorado,
in the development of GEOTRANS. Their comments and suggestions significantly
improved the computer program and this report. The: author would also like to
acknowledge the comments and suggestions of Virginia M. Glanzman, U.S.
Geological Survey, Denver, Colorado, that significantly improved the cohesiveness
and clarity of this report.

GEOFILE COMMANDS

GEOTRANS reads, interprets, and acts on each command that has been
recorded in a GEOPROGRAM geofile. These files begin with a START command
and end with a QUIT command (see figure 1). The rest of the geofile consists of
both 3D coordinate data and various commands that describe what features the 3D
coordinates represent and the information needed to display them. In geofile, every
command is preceded by the ASCII character sequence "CHANGE TO" that
characterizes it as a command. The following paragraphs describe these commands
and their purpose in GEOPROGRAM. These same commands take on a different
meaning during the GEOTRANS translation to KGIS and ORACLE, and are
described later in the section "GEOTRANS PROGRAM".

Change to Plot Area

Before recording data with GEOPROGRAM, the operator defines one or
more plot areas (windows) and assigns a number (code) to each plot area. The 3D
coordinates are projected onto the plotting media in i wo dimensions within the
defined plot area. Each projection type available in GEOPROGRAM
(orthographic, perspective, diametric, isometric, full periphery) requires a
transformation to convert the 3D coordinates to 2D plot coordinates of the selected
projection plane. A projection file created in GEOPROGRAM contains the
parameters that define each 3D to 2D transformation

START
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO

948024,
CHANGE TO

950010,
CHANGE TO

950077,
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO

631995,
CHANGE TO
CHANGE TO
CHANGE TO

632001,
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO

950230,
CHANGE TO

950233,
950229,
950219,
949400,
949395,
949387,
949377,
949366,
949360,

CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO
CHANGE TO

952646

1 VALVES

rock BOLTS

PLOT AREA 1
CONT LINE OFF
SMOOTH LINE OFF
LINE TYPE 2
SYMBOL TYPE
PLOT AREA 1
LABEL rock bolts
SYMBOL TYPE 3 __
SMOOTH LINE OFF
OBJECT 0.00000 ROCKBOLT1
12 797464.99 207632.842
OBJECT 0.00000 ROCKBOLT2
29 799102.62 207647.26
OBJECT 0.00000 ROCKBOLT3
24 798886.50 212023.18
SYMBOL TYPE 46
SYMBOL TYPE 26 str./dip
LABEL Slickensides
ATTITUDE 5.41052 10.0/50
03 882828.86 6215.88
OBJECT DL 5.41052 Slickensides
SYMBOL TYPE 31 plunge/arrow
ATTITUDE 1.91986 60.0/62
85 882821.88 6218.83
OBJECT DV 6.76410 Fold Axis
PLOT AREA 7
CONT LINE ON
SMOOTH LINE ON
LINE TYPE 3
SYMBOL TYPE 2
PLOT AREA 7
LABEL fracl
LINE TYPE
51 799212.64
PEN DOWN
23 799186.60
85 799136.76
41 799124.29
17 793758.78
28 793716.54
73 793670.92
47 793606.57
41 793559.55
03 793540.64
PEN UP
SYMBOL TYPE
PLOT AREA
LINE TYPE
LABEL frac2
34 799152.54

2 Fracture
214143.91

214154.81
214174.93
214190.68
216695.33
216703.06
216722.16
216749.38
216764.32
216770.45

1 target
7
2 Fracture

215437.10

Figure 1.-Example of a geofile.

CHANGE TO PEN DOWN
952628.54 799156.51
952610.20 799154.59
952586.91 799173.86
952559.13 799188.02

CHANGE TO PEN UP
CHANGE TO SYMBOL TYPE 1
CHANGE TO PLOT AREA 2
CHANGE TO LINE TYPE 2
CHANGE TO LABEL frac3

950355.44 800107.36
CHANGE TO PEN DOWN

950362.46 800112.58
950372.67 800131.07
950383.54 800146.45
950396.27 800159.56
950414.74 800179.92
950445.07 800211.28
950451.63 800223.25
950453.30 800231.82
950450.56 800245.95
950464.10 800262.40
950475.86 800273.17
950505.48 800303.22
950511.09 800319.08
950524.70 800344.64
950524.00 800353.88

CHANGE TO PEN UP
QUIT

215429.99
215416.76
215410.53
215399.69

target

Fracture

213069.13

213049.96
212972.04
212904.51
212871.14
212823.46
212733.98
212682.37
212664.40
212645.18
212575.17
212527.10
212419.90
212390.87
212302.69
212283.96

Figure 1.-Continued.

Change to Label

The operator may assign an alphanumeric label (geolabel) of up to 40
characters to each collected point or line. Each recorded object may be given a
unique geolabel. For example, five fracture traces may be given consecutive
geolabels, fracl through fracS. Alternatively, a single geolabel may describe many
subsequent data entries and in fact, will continue to do so until the operator changes
the geolabel.

Change to Line Type

The line type is used to classify lines. The line type describes what feature a
line represents and(or) how the lines are to be plotted. Similar linear features, e.g.,
fault traces, are appointed the same line type when collected in GEOPROGRAM.
The GEOPROGRAM user assigns each line type an integer value (code) and, if
desired, an alphanumeric label. For example, all fracture traces might be given the
line type "1 FRACTURE" (here the code 1 is followed by the alphanumeric label
FRACTURE), while faults may be given line type "3" (here only a code is used).
The code is recorded and is associated with the 3D coordinates of the succeeding
feature in the geofile.

Change to Cont < On > < Off >

CONT (a shortened form of continuous) ON describes if the operator used
continuous point collection mode (points collected automatically at defined
increments) while recording a line. CONT OFF describes point by point (points
manually selected) collection mode. CONT ON does not specify which point rate
criteria (distance/angle or time) was used when continuously collecting coordinates.

Change to Smooth <On> <Off>

SMOOTH ON indicates that a line collected either by continuous or point by
point mode should be smoothed using a spline or similar function as it is sent to an
output device. SMOOTH OFF indicates a collected line should not be smoothed or
splined went sent to an output device.

Change to Pen Number

A pen number is defined in the line type file for automatic pen selection
during on-line plotting when working in GEOPROGRAM. If the user enters 0 in
the line type file, he can interactively select the pen number while plotting.

Change to Symbol Type

The symbol type defines what symbol is associated with the succeeding 3D
coordinates and(or) how those symbols should be plotted. The GEOPROGRAM
operator assigns each symbol, whether a physical object location or measurement
location, an integer value (code) and, if desired, an alphanumeric label. For
example, a surveying target may be recorded as symbol type "34 TARGET' (here 34
is the code with a label of TARGET) while the location of a plunge and trend
measurement may be designated as "27 SLICKENSIDE".

Change to Attitude

In the geofile, the attitude command contains
defines the angle of rotation in radians for a
succeeded by an ASCII label of the measured values
trend.

X/VS.1..I. l**AJ.AAJ fc» M. VV*A *..

particular symb
d values of strik

Change to Object

a real number value that
ol. This value is

of strike and dip or plunge and

Object denotes plotting of the current symbol. As part of defining the symbol
in GEOPROGRAM, trie operator may select annotation to plot beside the symbol.
For attitudinal symbols the operator selects a value for the dip and strike (D),
plunge and trend (P), or one or more coordinate values (X), (Y), or (Z) for control
points. In addition, the operator may also select annotation that will plot next to the
attitudinal symbol. Annotation may be fixed (F), var able (V), or the current
geologic attitude (geolabel L). The object command records this one or two ASCII
character code. In the code DL for example, the D indicates a dip and strike symbol
should be plotted using the dip and strike information recorded in the most recent
ATTITUDE command, while the L indicates that the current geolabel be plotted
beside the svmbol. For the code DV, the D indicates that a dip and strike symbol
should be plotted and V indicates that the varying label (a separate label is entered
for each symbol by the GEOPROGRAM operator) should be plotted next to it.
Following the one or two letter code is a real number value in radians dictating
rotation of the symbol, succeeded by the alphanumeric annotation. In the case of
attitude symbols, the symbol rotation is redundant to that given in the attitude
command.

Change to Pen Down

Pen down begins a line at the most recent coordinate read. The command
tells an on-line screen or plotter device to put the "pen" down at the first coordinate
location and to wait for the next point to draw to or for the next PEN UP command.

Change to Pen Up

Pen up indicates that the user is finished collecting the coordinates of a line.
This command tells the device to raise the "pen".

KORK GEOGRAPHIC INFORMATION SYSTEM

KGIS is a hybrid data model that stores attribute data in a relational
database and coordinate data in an object-oriented database management system
(Ingram and Phillips, 1987). Complex data structures are hidden in the lower levels
of the system that provides a powerful high-level view to the user where both
coordinate and attribute may be queried at the samel time. The topologic data
structure allows relations of features between layers as easy as within a layer.
Tessellated data structure in the coordinate database/provides easy access to any
subset of the data base (Ingram and Phillips, 1987). During the GEOTRANS
translation, KGIS library procedures, available from KORK (KORK Systems, 1988),
are called to create nodes, edges, faces, topology, th6mes, and geographic features
that are stored for later display, editing, or plotting.

EXPLANATION OF TOPOLOGY

Managing and maintaining large spatial databases have plagued the design of
geographic information systems. This problem has been addressed through the
development of topologically structured databases. Herring (1987) describes
topology as "coordinate free geometry", i.e., those relationships that are maintained
between objects regardless of the coordinate system. He lists curve, connected,
adjacent, bounded, inside, outside, boundary, and orientation as examples of these
topologic relationships. Imagine putting a Boeing 747 jet with the nose facing north
on a magic platform. The platform can enlarge or reduce whatever is on it and,
magically, the jet begins to shrink. Although the size of the jet changes, the nose of
the jet continues to face north, the seats are still inside, and the curves of the jet
engines are still curved. Removing the coordinate framework from spatial data has
given rise to faster and more efficient algorithms to process and manipulate
topologically related objects.

Herring (1987) draws analogy between the topologic structure of a map to a
jigsaw puzzle. The puzzle pieces are analogous to faces while the lines between
pieces are analogous to nodes and edges. A topologically structured "puzzle" is
aware of relationships to adjacent pieces and would be able to assemble itself.

In KGIS, 2D topologic information is created as edges, nodes, and faces are
built from digitized points. These features are in turn grouped into themes and
geographic features that are described later.

KGIS TOPOLOGIC DEFINITIONS

Terminology or definitions used for topology, data structures, and objects
may vary in specifics from one GIS to another. Therefore, the following sections
provide an overview of specific terms defined and used by KGIS (fig. 2).

Topologic Features

Topologic features are nodes, edges, and faces that are built from raw
digitized point, line, and polygon coordinates. Both a single, isolated digitized point
and the coordinate location where two or more lines intersect define a node
location. Line coordinates (a stream of X,Y coordinates) form an edge until that
line crosses another line (in 2D). At the intersection of any two lines, the
coordinates leading up to the intersection become an edge, a node is created at the
intersection point, and a second edge is created from the remaining coordinates of
the digitized line. Faces are unbroken areas, defined by a series of edges and nodes
that surround an area. KGIS keeps track of each object and its relationship with all
surrounding objects in 2D space monitoring which faces, edges, and nodes give rise
to cartographic features.

As an example of the process of building topology, figure 3 shows a
hypothetical map. Here, Highway 80 was digitized from the southwest to the
northeast (a single line shown as the segments labeled with boxes 1, 3, 9, 32, and
111). As topology was created, the single digitized line was split up into edges 1, 3,
9, 32, and 111; a new edge being created wherever a line intersects or crosses
Highway 80. At each such intersection, a node is created (indicated by black dots
labeled with circles 15, 26,137, and 14). The nodes and edges listed above now
make up a cartographic feature (explained in next section) called Highway 80.

Geofile
(digitized coordinates

and commands)

f GEOTRANS 1

Topologic feature
(build nodes, edges)

I Cartographic feature
(set of edges and nodes)

Theme
(set of cartographic

features)

DSR11
Analytical Plotter

Planes_record file 1
(non-coordinate attribute data) I

[GEOTRANS]

 Oracle RDB

Geographic feature
(a cartographic feature and
corresponding attribute data

in Oracle RDB)

Figure 2. - KGIS Topologic Terminology.

8

N

Highway 80

Figure 3. - Hypothetical map with topologic building blocks.

A single edge, node, or face may play many ro
different cartographic features. For example, the edg
segment of Highway 80 and also a part of a face: land
triangle in fig. 3). By building topology, the GIS can
"pieces" an which cartographic feature they help to n
nodes, edges, and faces allows the GIS to keep track
2D space between one cartographic feature and any other cartograph

es by being a part of several
e labeled with box 3 is a
parcel 47 (identified by a

:eep track of the coordinate
up. This bookkeeping of

)f relationships (topology) in
11 ic features.

mike

Cartographic Feature;

Cartographic features are lines, points, or polygons (unfortun
digitized coordinates or streams of coordinates are al
and polygons; the cartographic feature, in addition,
built from nodes, edges, and faces. A linear cartograph
series of edges and nodes. Two lines may share some
contain some edges they do not share. This relationship
being made up by many edges and nodes is often termed

Themes

ately the raw
>o often termed lines, points,

contains topologic information)
ic feature is created from a

edges, and at the same time
of one cartographic feature
a one to many relationship.

A theme is a set of cartographic features that
example, all of the trout streams for an area that are
might make up one theme, improved roads that cont
gravel might make up a second, and unimproved roa
theme. The relationship here is many to one: many i
theme.

re similar in some regard. For
Dpen all year to fishermen
in greater than 30 percent
s might make up a third

individual streams make up one

Geographic Features

A geographic feature is the combination of th
described above and the supplementary non-coordin
The coordinate and non-coordinate data are joined by
(KORK Systems, 1988). The relationship here is one
to one cartographic feature and its associated non-coordinate

3D Topology

In order for geologists to be able to study 3D
topology must carry through from a 3D data collection tool such as
GEOPROGRAM to a GIS database to create a solic
a model, made possible with 3D topology, would allo
model true geologic relationships. They could invest gate the intersections of
fracture planes at various depths, model fault curvati re, and even look at a cross
section several feet "into" a drift wall to study and model the impact of fractures on
fluid flow. A true 3D GIS must be able to manage and use the third dimension (z
value) dynamically, as it does the x and y values. Unjbrtunately, most GIS databases
are based on 2D rather than 3D topology. Attempts
to the topology have resulted in storing the third dim
with other supplementary data. Although some GIS
elevation data to create a surface for a perspective vi
true 3D GIS and 3D topology.

cartographic feature
te data residing in ORACLE.
means of a spatial "key"

to one: one geographic feature
data.

eologic relationships, 3D

earth model. The use of such
geologists to study and

at adding the third dimension
ension as an attribute along
.oftware are capable of using
;w, these systems fall short of a

10

Rather than just an attribute, the z coordinate must be placed at the same
level, with all the functions of the x and y coordinates in the creation of a solid earth
model. Such a model would require modifications in the creation of topology and
topologic operations that are not currently addressed in 2D GIS programs. The
geologic 3D GIS must be able to store and access the 3D structure of geologic
elements both quickly and efficiently.

PROCEDURAL CALLS TO THE KGIS LIBRARY

The KGIS procedures used by GEOTRANS are called from a PASCAL
procedure library. Below, the procedures are grouped together in roughly the order
used in GEOTRANS, beginning with calls to a group of initialization procedures.
The second set of calls translates the coordinate data and builds topology; the third
set builds themes, and the last set of calls close and cleanup the ties needed for
translation between GEOPROGRAM and KGIS.

Initialization Procedures

The first call to the KGIS library is db opened. This procedure opens the
coordinate database created by the user outside of GEOTRANS with the
KGISINIT program (KORK Systems, 1988). After the database is opened
successfully, two procedures are used to set up and scale the coordinate database:
1) Map_extents reads the map coordinate range that was entered during the
initialization of the database, and 2) world_to_range converts the real world
coordinates defining the extents of the map tolnternal "KORK space" coordinates
(a scaling and translation function). Two procedures, display^init and
top_window_display, initialize and set up the Tektronix graphics terminal,
respectively. The graphics screen is scaled to the current database range and
communication is established for drawing to the screen. As a final step in the
initialization, the KGIS coll parm (data collection parameters) record is assigned
values, and defined for the desired precision to automatically trim and extend lines.
The collection parameters consist of values that determine when points or lines will
automatically snap to other points or lines, extend or peel back a line, or trim a line.

Translation Procedures

The translation procedures read coordinate values and act on commands
recorded in a GEOPROGRAM geofile. A world3D_to loc procedure transforms
real world coordinates into internal "KORK space" coordinates. After
transformation, the topology is constructed, and lines and points are placed into the
correct theme.

GEOTRANS calls two KORK library procedures as it begins to build
topology for any point or line. Init_new_cart gets a new cartographic element (a
data type), defines its record components to be a line or point, and assigns an
individual identification code to that element. Init_id_list initializes the
identification (id) list for tracking cartographic elements. As mentioned above, the
coordinates are collected, projected onto the desired 2D plane, and transformed
into "KORK space" coordinates.

While translating single point coordinates (i.e., symbols), library procedures
are called on to build the required topology, in this case isolated nodes.
Create^isol_node creates a topologic element (a node) and add_id to_end adds the
identification code to the end of the list that keeps track of the nodes.

11

When translating streams of coordinates (i.e., lines) with the GEOTRANS
program, the topologic element used is an edge rather than a node. The
cartographic element and identification list are initialized as described above for
points, however, because lines contain many sets of coordinates rather than just a
single set, a unique procedure, collect string is called,

The collect_string procedure uses calls to other
passed parameters. In this way, collect_string calls a
get_point, that gets the next point, and process_edge
keep track of edges and nodes that make up the line,
needs coll parm, the collection parameter record for
and start Toe, the first set of coordinates of the line.
end_loc, the coordinates for the ending point of the

The get_point procedure processes both points;
between the two, a flag is set that governs whether the
a point. When the program encounters a command P^
OBJECT, the flag will be turned on. While collecting
is turned off to re-route processing for string collection

Themes

procedures as part of its
GEOTRANS procedure
that calls add_id to_end to
In addition, collect^string
snapping and clipping lines,

Collect_string returns the

and lines. To differentiate
j procedure processes a line or
EN DOWN or CHANGE TO
the points for a line, the flag

Each line or symbol is assigned an integer cod^ in the GEOPROGRAM and
this code is used to define the theme name. The library procedure them_fpund
checks if the theme already exists, or if the theme should be added to the list of valid
themes. The first time a theme name is used in a geofile requires the help of the
init_new_theme and store_theme procedures from the library. These procedures
store a new theme by comparing the theme name wit|i a name in a look-up table (an
array containing a list of GEOPROGRAM line or symbol codes and corresponding
alphanumeric tneme names fig. 4).

A library function, legend_line returns the line in a legend file (created
outside KGIS by the user) corresponding to the theme name. The legend file
contains parameters that govern how each theme will be displayed on the Tektronix
graphics terminal (e.g., color, brightness, order of importance of themes to govern
which themes overlap other themes on the screen display, etc.). If no entry occurs in
the legend file, a set of default values are used (KORK Systems, 1988).

Currently, if the object being translated is a point (symbol), procedures are
called to position the point at the correct location on the Tectronix screen and draw
a fixed diameter circle at that location (circles are used to represent any symbol
during the translation). If the object is a line, a line is drawn at appropriate
locations on the screen.

12

Example of a line type table file

1 fracture
2 fault
3 contact
4 joint
5 anomaly

Example of a symbol type table file

1 survey-target
2 cavity
3 strike/dip
4 plunge/trend
5 fold-axis
6 lithophysae

Figure 4.~Examples of line and symbol type tables.

13

Completion

buildFinally, a set of four procedures will either
translation of the coordinates into the KGIS coordinate
error, will abort the creation of the topology. Trans
aborts a transaction if errors occur, otherwise, build'line
The build line procedure constructs a line from coo"
element defined as a line, and a list of directed edge
line with topologic relationships is placed into the d
produces point topology from a node by combining
cartographic element and the list of nodes, and placing
completes the transaction and commits the new topology
free_id_list frees the node id list. After the translation
procedure db_closed closes the database.

SENDING INFORMATION TO ORACLE RDB

Non-coordinate data is sent to the ORACLE
Procedures from the KGIS library that address ORACLE are called to initialize, to
log on, and to submit this information. GEOTRANS initializes communications
with ORACLE using the rdblnit Comm procedure " "
on to the relational database (rd5).

the topology and submit the
database or, if there is an

abort is a procedure that
or build_point is called,

'rdinate data, a cartographic
5 and nodes. The completed
tabase. Build_point actually

coordinate data with a
it in the theme. Trans end

to the database, while
process is complete, the

relational database.

bllowed by the rdbLogon to log

Outside of GEOTRANS, the user names and sets up a table in ORACLE
that will receive the non-coordinate information from GEOPROGRAM files (see
fig. 5 and "User's Manual" in this report). The user communicates with ORACLE,
via structured command language (SQL). By entering SQL commands, the user
creates a table made up of columns, each with a specific heading. GEOTRANS will
place each piece of information needed from GEOPROGRAM files into the
correct column under the correct heading in ORACLE. A library procedure,
sql_command, holds a table name and all of the column headings that are to receive
information from the translation (the headings must be in the same order they exist
in the table). Rdb_Submit SQL submits this command to the rdb, thereby setting
up communication paths (links) to the table and preparing the table to receive the
data.

Currently, GEOTRANS sends information contained in a planes_record file
(a file that contains parameters for each measured plane orientation recorded in
GEOPROGRAM) to ORACLE. The file is opened and values are bound into
ORACLE as parameters. RdbBind_stryal, rdbBind_intval, and rdbBind_dbleval
bind strings, integers, and double precision real values, respectively, to the
ORACLE database. RdbExec_SQL begins execution of the SQL command, and
rdbCommit commits the transaction to the database. After the data is sent,
rdbRelease SQL closes the SQL statement cursor ajid rdbLogofflogs off ORACLE.
Finally, rdb~Alldone ends all communications with th£ ORACLE relational
database.

14

Column name Width Data Type

sname
skind
inumpnt
dnel
dne2
dne3
dne4
dne5
dne6
dne?
dne8
dne9
dnvl
dnv2
dnv3
dqvl
dqv2
dqv3
dcvl
dcv2
dcv3
dstrike
ddip
ddir
dms
dmd
dmp

20
20
10
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

CHAR
CHAR
INTEGER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

Figure 5.--Format of the columns to set up an ORACLE table.

15

GEOTRANS PROGRAM

To complete a translation, the GEOTRANS
these files: 1) the KGIS database, 2) the legend file,
types file, and 5) the line types file. A description of each

KGIS Database

rogram requires access to
) the geofile, 4) the symbol

file follows.

KG ISINIT program to initialize a
files, a < database
file. These files will receive

two
Prior to translation, the user must run the

KGIS coordinate database. KGISINIT will create
filename > .DAC file and a < database filename >.
and store coordinate information from a geofile.

Legend File

The construction of the legend file is done prior to running the translation.
The legend file assigns graphics attributes for drawing various themes to the screen.

Geofile

As described above, the geofile is a file of G^OPROGRAM coordinates and
commands.

Line Type File

The line type file is an ASCII file that contains line codes assigned in
GEOPROGRAM and corresponding alphanumeric theme names that will be used
in KGIS. The file is read by GEOTRANS and read into an array for looking up and
assigning theme names while completing a translation.

Symbol Type File

This file is identical in function to the line type file described above,
however, rather than looking up line themes, the file searches a different table for
symbol themes.

Proceeding with the Translation

After checking for the existence of these files and completing the
initialization procedures described above, GEOTR/3 kNS proceeds to read the
geofile. If the program encounters a command, it is earned out and the program
reads the next line. If it encounters a coordinate, the coordinate is read into a
buffer. If the next line read is a CHANGE TO OBJECT command, then the
coordinate in the buffer represents a symbol, and GEOTRANS will create the node
and its topology. If the next line contains a command that indicates that the
coordinate in the buffer is the first point of a line (CHANGE TO PEN DOWN), the
procedure get_point is called, processing the rest of the coordinates making up the
line. If two or more coordinate sets are encountered before the CHANGE TO PEN
DOWN command, those points successively enter me buffer eliminating the
previous point(s). A flag is used to govern this process of delegating which
procedure is given control of processing.

16

Each coordinate, as well as alphanumeric labels and real number values that
accompany commands are simply read into buffers. Each command must be
interpreted to carry out the appropriate action on the information contained in
these buffers. The GEOTRANS program takes the following actions on geofile
commands.

Change to Plot Area

The first plot area code is read from the geofile as part of the initialization
process. GEOTRANS uses the code to open a projection parameter file that has
been created with the GEOPROGRAM and reads the record corresponding to the
plot area code. This record contains the plot area parameters that are used in
subsequent coordinate transformations. Succeeding commands to change the plot
area initiate a comparison between the current plot area code and the new code. If
they are the same, no action is taken. If the codes are different, the translation is
stopped, and the user must enter whether to change plot areas or to keep the
original plot area. If the user changes the plot area, a new window is created, the
projection parameter file is read for new record information, and subsequent
coordinates are processed for the new plot area. If the user wants to keep the
original plot area, no action is taken and the translation proceeds.

Change to Label

The geolabel is read into the label buffer and will remain in the buffer until
changed by another geolabel command.

Change to Line Type

The line type code is read and compared to the line type look-up table for a
match. The geofile text is also compared with the themes in the table, reporting to
the user whether there is a match or mismatch. Regardless, the alphanumeric text
from the look-up table is used to place the line into the theme indicated by the line
type code in the geofile and the line type code is placed into a buffer.

Cont <On> <Off>

In the current version, information as to whether the CONT command is ON
or OFF is held in a buffer but no action is taken in the translation.

Smooth <On> <Off>

In the current version, information as to whether the SLICK command is ON
or OFF is held in a buffer but no action is taken in the translation.

Change to Pen Number

In the current version, this command is ignored by GEOTRANS.

17

Change to Symbol Tvi>e

The symbol type code is read and the symbol type look-up table is searched
for a match. It compares the geofile text with the syiiibol table alphanumeric
entries, reporting whether there is a match or mismatch. In either case, the geofile
symbol type code will be used to attach the symbol to the correct theme and the
symbol type code is placed into a buffer.

Change to Attitude

The rotation buffer is filled with the rotation value of an attitude symbol that,
in the case of the strike and dip symbol reflects the strike. The strike and dip buffer
receives the ASCII strike and dip information. The information in these buffers is
used later with the CHANGE TO OBJECT coi

Change to Object

This command sets a flag to indicate that the jcoordinates held in the buffer
make up a point (symbol), retrieve the theme name from the theme name buffer,
and call the procedure to initialize and store the theiine if necessary. This command
will then plot the symbol type from the buffer and read the symbol rotation value
and the object label into their respective buffers. When used in concert with the
Change to Attitude command, the strike and dip or plunge and trend with the
buffered attitudes and/or geolabels are plotted. Finidly, a call is made to the
GN_Get_Node procedure that will build the required topology.

Change to Pen Down

This command sets a flag to indicate that the coordinates that will follow in
the geofile make up a line, retrieve the theme name from the theme name buffer,
and call the procedure to initialize and store the theijie if necessary. The first
coordinate will have been read into a coordinate buffer. The GS_GetJString
procedure is called. This procedure summons the needed KGIS procedures for
building topology and sets a flag to true that will get the first point from the
coordinate buffer. In the get_point procedure, if the first point flag is set to true, the
coordinate buffer is read, the translation of 3D coordinates into a 2D projection
takes place using a GEOPROGRAM transformation procedure, and, as mentioned
above, a KGIS procedure transforms the coordinates to "KORK space". Because
the object being translated is a line, there must be a movement of the cursor to the
first point location on the Tektronix screen to begin ithe drawing of the line. After
this move, the first point flag is turned off.

The remainder of the get_string procedure consists of calling a KGIS
procedure, collect_string. As mentioned above, the key to the successful collection
of the remaining coordinates that make up the line is the first point flag; a flag that
allows collection of successive points when it is turne d off. Successive fine
coordinates are read, a transformation performed to
topology created, and the line drawn on the screen.

the plane of projection,

Warning: If the operator inadvertently deletes this command while editing
the geofile, the coordinates will successively enter and exit the coordinate buffer,
but no line will be translated to the database.

18

Change to Pen Up

This command is used to tell GEOTRANS that it has received all the
coordinates for the current line. GEOTRANS will also stop processing a line if it
encounters any other command while in get_point.

Communicating Progress to the User

The GEOTRANS program opens all of the required files needed to
complete the translation. GEOTRANS reads each command or coordinate
consecutively from the geofile and executes the specified request. It is robust
enough to continue even though an operator may have edited a geofile and deleted
some commands. Initially, GEOTRANS accesses the geofile to acquire maximum
and minimum x and y coordinates and the first addressed plot area. GEOTRANS
writes messages of what it has found in the geofile to the screen (to indicate its
progress) and to a < geofile name> .SWF file on disk (for a hard copy record of
translation) as the translation proceeds. The GEOTRANS program is structured so
there is a modular interface to the KORK library and should be relatively easy to
interface with other 2D or 3D GIS systems.

GRAPHICS SCREEN PROCEDURES

While translating geofiles, calls are made to the KGIS library to address the
Tektronix graphics terminal. These procedures will plot lines and symbols on the
screen as they are translated, and set the coordinates for an information location
(infoloc), where information blocks will be displayed on the screen with data from
ORACLE. Each GEOTRANS procedure that addresses the graphics screen
includes calls to AGIsymBlk_start and AGIsymBlk^end, KGIS library procedures
that use records containing parameters for addressing the graphics screen. The
following is a description of GEOTRANS procedures that in turn call KGIS library
routines:

Move node_to_location: Calls the KGIS library procedure set_cart infoloc
that defines the screen coordinates for the location for information Block for
each object. AGImove moves the screen cursor to the current coordinates to
draw a circle.

Move_to_start_of line: Calls set_cart infoLoc, as described above.
AGImove moves trie screen cursor to tEe current coordinates to draw a line.

Draw_point to_screen: Uses the AGIdraw_circle to draw a circle at the
current location and with the given diameter.

Draw_line_to_screen: Uses the AGIdraw procedure to draw line segments to
the graphics screen.

19

CALLS TO THE GEOPROGRAM LIBRARY

GPCGTT Geo_Program_Compute Ground
procedure that calls supplementary GEOPROGRA
matrices and parameters for 3D to 2D coordinate in

To Trans_Transformation is a
 ocedures to compute

transformations (fig. 6).

CGTTM_Compute_Ground_To_Trans_Matrix computes
transformation matrix from ground coordinates to a

Subsequent calls are made to one of three procedure s to compute transformation
parameters if the transformation is a full periphery projection.

a homogeneous
ransformation plane.

Drift_Parameters for a
Transformation_Parameters
projections.

Compute Driftl_Transformation_Parameters computes
normal drift periphery projection. Compute_Drift2_
computes Drift_Parameters for radial drift periphery

Compute Shaft_Transformation_Parameters computes Shaft_Parameters for the
shaft periphery projection. These specialized projections are used for underground
mapping projects (Dueholm and Coe, 1989).

Prior to transforming 3D coordinates to KORK space coordinates, a
GEOTRANS procedure OTT Object ToJTable usefe the homogeneous
transformation matrix to transform 3D" coordinates to the selected 2D
transformation plane in a plane similarity transformation. For full periphery
transformations the matrices are modified from the tunnel parameters and one of
the following: (1) a Ground To_Driftl_Periphery p -ocedure that transforms
ground coordinates to peripEery coordinates using a normal drift periphery
projection, (2) a Ground_To_Drift2_Periphery procedure that transforms ground
coordinates to periphery coordinates using a radial c rift periphery projection, or (3)
a Ground_To_Shaft_Perjphery procedure that trans brms ground coordinates to
periphery coordinates using a shaft periphery projection.

Geofiles are made up of 512 byte records that do not necessarily coincide
with single command lines or coordinate sets entered by the user. Two procedures
are used to move backward and forward through these records one line at a time.
FIOF Forward In Output_File reads forward through the file, while
BIOF~Backwanl fn Output File moves backwards | through the geofile records.

20

Geofile
(3D coordinates)

IGEOTRANS

Unsealed projection
(calls to GEOPROGRAM
____library)____

Scaled projection
(2D plot projection
e.g., drift or shaft)

Calls to
KGIS library

c 2D "KORK space"

Figure 6.~Flow diagram of coordinate transformations during translation.

21

CALLS TO THE VT100 LI BRARY

GEOTRANS can be run from DEC VT100,
terminals. The VT100 Library (KERN and CO., Ltd
address these terminals. GEOTRANS uses the following
library:

vT200, or VT300 series
.) provides procedures to

procedures from this

CURPOS Cursor Position - Positions the cursor
DBWIDT~Double~Width - Prints double wid
SELGRA Select Graphics - Select a variety
such as blinking characters.
SELSGR_Select_Special Graphics - Prints
SELASC Select_ASCII -Trints ASCII chara
ERASCFT Erase Screen - Clears the screen.
BELLRI "Bell RTng - Rings the Bell.
1C Invisible Cursor - Makes cursor invisible
VC~ Visible Cursor - Restores cursor to the s

USER'S MANUAL

on the screen,
h characters to the screen,
f screen graphics operations

special characters to the screen,
ters to the screen.

creen.

Before running the GEOTRANS program, the user will need to make sure
the necessary files are accessible to GEOTRANS. For translation of coordinate
data, as mentioned above, GEOTRANS must have access to: 1) the KGIS database,
2) the KGIS legend file, 3) the GEOPROGRAM geofile, 4) the GEOTRANS
symbol type file, 5) the GEOTRANS line type file, and 6) the GEOPROGRAM
plot area file (a file created in GEOPROGRAM that contains plot area parameters
such as index points, angles for perspective views, and so on). For translation of
non-coordinate data into ORACLE, GEOTRANS must have access to: a user
created ORACLE table with the correct columns (specified below), ORACLE, and
the planes_record file. In addition, the user must hs ve a valid useraame and
password to enter ORACLE.

FILES NEEDED FOR DATA TRANSLATION TO KGIS

KGIS provides three programs the user must use for translating and using
data from GEOPROGRAM. KGISINIT is a program that initializes an empty
coordinate database, KGISEDIT will allow the useil to edit data in a database, and
KGISSQL is a program to query and view coordinate and non-coordinate data. The
user should consult the KGIS User's Manual for detailed information concerning
these programs (KORK Systems, 1988).

Before running the GEOTRANS program, an empty KGIS database is
created with the KGISINIT program. This program creates a < filename > .DAC
file and a < filename > .DAB file. The legend file is created outside of GEOTRANS
according to instructions in the KGIS manual. The geofile is created while running
the GEOPROGRAM with the filename and extension being selected by the user.
The symbol type file and the line type file can be created with a text editor (see fig.
5). These files will contain simply line or symbol codes used in GEOPROGRAM
and corresponding text that designate theme names for KGIS. The plot projection
file is created while running GEOPROGRAM with the filename and extension
selected by the user.

22

FILES NEEDED FOR DATA TRANSLATION TO ORACLE

An ORACLE table must be created by running an ORACLE option, i.e.,
EasySQL or SQLPlus. At present, 27 columns must be entered in the order
specified and with the parameters given in figure 5. ORACLE must be running and
available to the station where the user is working. The planes_record file is created
while running the GEOPROGRAM with the filename and extension selected by the
user.

RUNNING GEOTRANS

In the following section, bold type indicates what the user will see on or type
to the alphanumeric screen. < RETURN > indicates the user should press the return
key. Small case letters between angle brackets indicates a user supplied name.

The user should turn on the Tektronix graphics terminal and access the
KGIS account via the VT220 or VT320 screen. GEOTRANS is started by typing:
GEOTRANS at the VAX $ prompt. An introductory screen will come up and the
user should press < RETURN > . A menu screen will appear that will give the
operator the option to: 1) translate data to ORACLE, 2) translate a geofile to
KGIS, or 3) Quit.

If the user selects 1 and presses < RETURN >, they will be asked: Have you
prepared an ORACLE Table? (y/n)- K n and a < RETURN > is entered, the
program returns to the main menu. If y and a < RETURN > is selected, the program
informs the user that it is opening communications with ORACLE: initializing
communications with ORACLE database... GEOTRANS asks the user to enter a
user name and password: Enter ORACLE account Username: and Enter ORACLE
account Password:. The user enters these items, pressing < RETURN > after each.
GEOTRANS tells the user: Logging onto ORACLE Account: < username >... If the
entries are not valid, the program returns to the main menu. If they are valid,
GEOTRANS will ask for the name of the ORACLE table to send data to: Enter
ORACLE TABLE name translating to:. The user should enter the name of the
table they have created and press < RETURN > . If the table is not found, the error
message: I am unable to submit your command comes up and returns to the main
menu. If the table is found, the user is asked: Enter the PLANES record file name
translating from:. The user must enter: < plane record filename > . < extension >. If
the plane record cannot be found or is empty, the program will return to the main
menu. If the file is found, GEOTRANS flashes WORKING... on the screen as it
translates the data to the ORACLE table. After completing the translation,
GEOTRANS returns to the main menu.

If the user enters a 2, the screen clears and GEOTRANS asks: Enter the
KGIS database name:. The user enters: < KGIS database name > WITHOUT THE
EXTENSION. A message of Please Wait... displays on the screen. If the file is
found, the message: KGIS Database, OK is displayed. The user should press
<RETURN>.

23

The query: Enter name of legend file: [< KGIS database name >] is written
to the screen. In square brackets will be the name of the KGIS database entered in
the previous step as a default value. The KGIS user's manual describes in detail the
structure of the legend file and how commands are used to set the attributes it
contains. If the user does not know the name of the
create one, press < RETURN > to have the program

egend file or has failed to
accept the default. The default

i '11 . . /* t /* t.file will have the same name as the KGIS database aid will contain a set of default
file parameters determined by KGIS. Again the message Please wait... appears
followed by the message: Legend file, OK. The user

GEOTRANS will ask: Enter geofile name
user should enter: < geofile name >. < extension >
press < RETURN > . Once more, the message Please wait
message: GEOPROGRAM file, OK. The user should press

During each of the three steps above, if the ft e is not found, the error
message: FILE NOT FOUND :::::> <filename>.<(:xt.> will be displayed, followed
by a question asking if the user would like to try again or quit: Would you like to
enter <file> name again? (y/n). If n and a < RETURN > is entered, the program
returns to the main menu. If y and a < RETURN > is entered then the program
gives the user another chance to enter the name of the file.

should press < RETURN >.

for translation to KGIS:. The
they want translated to KGIS and

... appears followed by the
<RETURN>.

After the user has entered the file names successfully
type files are accessed and read into arrays. The ~
codes in the geofile with those in the look-up tables
is a difference, GEOTRANS will always use the alph
table. A file status box will appear on the screen to
were opened without problem. The user should pre

, the symbol and line
GEOTRANS program compares

o assign theme names. If there
lanumeric term in the look-up
nform the user if all of the files
is <RETURN>.

The program accesses the geofile to get the first plot area and retrieves some
parameters from the plot file for display on the screen, so the user can verify that
the plot area record is correct. If the information is correct, the user should press
<RETURN>.

The message SEARCHING... will flash at the! top of the screen. Four labels:
X MAX, Y MAX, X MIN, and Y MIN are placed on i;he screen while maximum and
minimum coordinate values are searched for in the geofile. After the coordinate
search is complete, a message: FINAL MAX AND MIN VALUES and the
coordinate values appear on the screen. The user should press < RETURN >.

A message: Starting geofile coordinate data
the user the translation has begun. All commands
displayed to the screen. Codes are compared to
message of either a match or mismatch is displayed,
actually used. Coordinates are not displayed but are
to the Tektronix graphics terminal.

translation comes up to inform
and their respective values are

symbol and line type files and a
along with what value was
represented as objects drawn

24

The translation will continue without stopping unless it encounters a
CHANGE TO PLOT AREA command, and then will inquire if the user would like
to change plot areas. If the user enters an n and a < RETURN > the translation
proceeds with the same plot area, disregarding the new plot area it found. If the
user enters a y and a < RETURN > the program will proceed with information from
the new plot file record. After the translation is complete, a message appears on the
screen: TRANSLATION COMPLETE. The user should press < RETURN >. The
program returns to the main menu and the user may select 3 to quit.

All information that is written to the screen during a coordinate data
translation to KGIS is also written to a file, < KGIS database name > .SWF. This
file may be printed for inspection and (or) deleted.

SUMMARY

Presently (December 1989), GEOTRANS is able to translate non-coordinate
data from a planes record file created in GEOPROGRAM to a table in ORACLE.
The data may then be queried in KGIS or queried and edited in ORACLE. The
program is easy to run in that the user need only enter names of required files and
have access to an ORACLE user name and password. Information in the ORACLE
table can be brought up in information blocks on the Tektronix terminal or
displayed on an alphanumeric terminal. These information blocks may contain
some or all of the information entered in the relational database for a single or
group of objects. These blocks may be brought up by entering KGISSQL commands
at the keyboard or by selecting an object on a Tektronix terminal with a mouse.

For coordinate data, GEOTRANS will translate lines and (or) points into
KGIS assigning them into themes that have been determined by the user and
building the 2D topology. The user need only know the name of the geofile and the
KGIS database name to run the translation. A file is created on disk during the
coordinate translation that may be examined to help solve possible problems. The
program will search for and display the maximum and minimum coordinates for X
and Y in the geofile. Several KGIS databases may be combined into one database if
needed and data may be edited while using KGISEDIT.

Currently, GEOTRANS sends information to the ORACLE database in a
rigorously structured manner; the ORACLE table must be set up prior to
translation. Development is continuing to make the translation more flexible to the
user.

2D topology is sufficient for many applications, however, for the mapping of
underground fractures in a shaft or drifts it is vital to have 3D topology. It is
necessary to know how objects relate to one another in 3D. We are currently
waiting delivery of the 3D version of the KGIS database to further refine the system.

The GEOTRANS program modular design provides flexibility and should
make the task of converting to a 3D GIS or to other 2D GIS systems relatively easy.

We are also waiting for delivery of polygon fill procedures and procedures
that allow plotting of a greater variety of symbols. KGIS currently supports only
three types of symbols (a cross, an open circle, and a small circle with a line through
it) that can be sent to an output device.

25

REFERENCES CITED

Dueholm, K. S., 1989, GEOPROGRAM a program for geologic photogrammetry on
the Kern DSR analytical plotter User's Manual, Open-File Report 89-481,47
p. (NNA.910415.0002)

Dueholm, K. S. and Coe, J. A., 1989, GEOPROGRAM: Program for Geologic
Photogrammetry: The Compass. (NNA.9104i5.0003)

Herring, J. R., 1987, TIGRIS: Topologically integrated geographic information
system: International Symposium on Computer-Assisted Cartography, 8th,
Baltimore, Maryland, 1987, Proceedings, p. 2&2-291. (NNA.910415.0004)

Ingram, K. J. and Phillips, W. W., 1987, Geographic Mormation processing using a
SQL-based query language: International Syinposium on Computer-Assisted
Cartography, 8th, Baltimore, Maryland, 1987, Proceedings, p. 326-335.
(NNA.910415.0005)

KERN and CO., Ltd., CH-5001, Aarau, Switzerland (Leica, Inc.).

KORK Systems, Inc., 1988, KORK Geographic Information System User's Manual:
KORK Systems, Inc., Bangor, Maine. (NNA.910415.0006)

ORACLE Corporation, 1986, Oracle for DEC VAX7VMS installation and user's
guide: Oracle Corporation, Belmont, California.

26

APPENDIX
Program Listing

27

PROGRAM GEOTRANS (INPUT, OUTPUT);

%include '$diskl:[kgisjkgislib.env'
%include 'geoglo.pas'

CONST
Change = 'CHANGE TO ';
Clean_Scr = 24;
Max_Array = 255;

TYPE
Element_Type = (ET_Point, ET_Line);
Line_Type_Record = RECORD

LT_Number : INTEGER;
LT_Text : VJ^RYING [256] OF CHAR;

END;

LTR_Array = ARRAY [1..Max_Array] OF Line_Type_Record;

Symbol_Type_Record = RECORD
ST_Number : INTEGER;
ST_Text : VJJ*YING [256] OF CHAR;

END ;

STR_Array = ARRAY [1..Max_Array] OF Symbol_Type_Record;

VAR
S_Label
Check_String
i, j, Fracount
First_Pa
Line_Count
Symbol
Husk_Area
Nchar
Line_Type_Number
Symbol_Type_Number
Pen_Num_Buf
Cont_Line_Bu f
Slick_Line_Buf
Minimax
OK
Retry
Dun
Finished
Pause
Error
Look_Forward
File_Open
Strike Buf

String_10
String_10
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER;
INTEGER;
INTEGER;
BOOLEAN;
BOOLEAN;
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN;
BOOLEAN
DOUBLE;

28

Rotation_Buf
{Dip_Buf
R
Count
X_Table_Out
Y_Table_Out
Z_Table_Out
S_X_Max
S_X_Min
S_Y_Max
S_Y_Min
Annotation
Read_File_String
Line_Type_Text
Symbol_Type_Text
Screen_Write_File
Input_Fi1e_Name
GEOP_F i1e_Name
TC_Name_File
YN
SW_File
Trans_Coord
Drift_File
Line_Types
Symbol_Types
Point_Buffer
LT_Store
ST_Store
Line_Type_Buf
Sym_Type_BUF
ET_Element
SD Buf

DOUBLE;
DOUBLE;}
DOUBLE ;
DOUBLE ;
DOUBLE;
DOUBLE;
DOUBLE;
DOUBLE;
DOUBLE;
DOUBLE;
DOUBLE;
String_40;
String_40;
String_40;
String_40;
String_20;
String_20;
String_20;
string_14;
String_3;
TEXT;
TEXT;
TEXT;
TEXT;
TEXT ;
Real_Array_3;
LTR_Array;
STR_Array;
VARYING [256] OF CHAR;
VARYING [256] OF CHAR;
Element_Type;
string256 ;

{ KORK-KGIS Variables }
First_Point:
Flag:
new_leg:
cartE:
nodeE:
themE:
edgeE:
Coll_Parm:
Start_Loc:
Loc_Buf:
End_Loc:
Id_List:
Node_List:
Err_Code:
Sql_Command:
Varying_Label:
Varying_Label2
Sql_Pil:
User Name:

BOOLEAN
BOOLEAN
BOOLEAN
Element
Element
Element
Element
coll_parmType
locationType ,
locationType ,
locationType ,
idListType ;
idListType ;
ErrorType ;
string256 ;
string256 ;
string256;
sql_cursor ;
string20 ;

29

Pass_Word:
Table_Name:
K_Name:
Theme_Name:
Leg_Name:
Kdb_Name:
Legend:
Xlow, Xhigh:
Ylow, Yhigh:
Db_Range:
Response :
I_response:

string20
string20
string20;
nameType
nameType
nameType
legLineType ;
baseType
baseType
rangeType ;
CHAR ;
INTEGER ;

{proj ect ion parameters}
W, H, B
Driftl_Parameters
xyzs
xyzl
xyz2

DOUBLE ;
Tunnel_Parameter_Type
Real_Array_3
Real_Array_3
Real_Array_3

30

FUNCTION Alfa(x,y: double): double;
VAR

a, offset : DOUBLE;
direct, octet : INTEGER;

BEGIN
IF x >= 0 THEN octet := 4 ELSE octet := 0;

IF y >= 0 THEN octet := octet + 2;
IF abs(x) <= abs(y) THEN

BEGIN
a := x;
x := y;
y := a;
direct := -1

END
ELSE

direct := 1;
IF direct > 0 THEN octet := octet + 1;
CASE octet of

7 : offset := 0;
6,2: offset := Phi/2,-
3,1: offset := Phi;
0,4: offset := 3 * Phi/2;
5 : offset := 2 * Phi;

END; { case }
IF x = 0 THEN

alfa := 0
ELSE alfa := offset + direct * arctan(y/x);

END; {* alfa *}

PROCEDURE Open_Input_File;
VAR

i : INTEGER;

BEGIN
Input_File_Name := GEOP_File_Name;
OPEN (FILE_VARIABLE := Output_File_Data,

FILE_NAME := Input_File_Name,
HISTORY := OLD,
ACCESS_METHOD := DIRECT,
ERROR := CONTINUE);

RESET (Output_File_Data, ERROR := CONTINUE);

Output_File_Pointer := 1;
FIND (Output_File_Data, Output_File_Pointer);
READ (Output_File_Data, Logical_Record);
Logical_Record_Pointer := 1 ;

END; {* Open_Input_File *}

31

I**}
PROCEDURE BIOF_Backup_In_Output_File

(VAR Edit_String: String_80; VAR Nchar: INTEGER);
VAR

Stop
First

INTEGER;
BOOLEAN;
BOOLEAN;

BEGIN

{ CHR(%0 / 15 /)CHR(%0 / 12 /) >

FOR I := 1 to 80 DO Edit_String[I]
Nchar := 0;
Stop := FALSE;
First := TRUE;

REPEAT
IF Logical_Record_Pointer <= 1 TH^N

BEGIN
IF Output_File_Pointer = 1 THEN

BEGIN
Stop := TRUE;

END
ELSE BEGIN i

Output_File_Pointer := Output_File_Pointer - 1;
FIND (Output_File_Data,Output_File_Pointer);
READ (Output_File_Data, LOgical_Record);
Logical_Record_Pointer : =| 513;

END;
END;

IF NOT Stop THEN
BEGIN
Logical_Record_Pointer := Logical_Record_Pointer -
IF Logical_Record[Logical_Record_Pointer]

IN [CHR(%0 / 15 /), pHR(%0 / 12 /)] THEN
BEGIN
IF First THEN
BEGIN
IF Logical_Record [Logical_Record_Pointer] =

CHR(%0 / 15 /) THEN
First := FALSE;

END
ELSE BEGIN

Stop:= TRUE;
Logical_Record_Pointer :
Logical_Record_Pointer
IF Logical_Record_Pointer > 512 THEN

BEGIN
Output_File_Pointer :
Output_File_Pointer + 1;
FIND (Output_File_Data,

Output_File_Pointer);

32

READ (Output_File_Data, Logical_Record);
Logical_Record_Pointer := 1;

END;
END ;

END
ELSE BEGIN
Nchar := Nchar + 1;
Edit_String[81 - Nchar] :=
Logical_Record [Logical_Record_Pointer];

END;
END;

UNTIL Stop;

IF Nchar <> 0
THEN FOR i := 1 TO Nchar DO

BEGIN
Edit_String[i] := Edit_String[80 - Nchar + i];
Edit_String[80 - Nchar + i] := ' ';

END;

END; (* BIOF_Backup_In_Output_File *)

33

{************************************^*********************}
PROCEDURE FIOF_Forward_In_Output_File

VAR
(VAR Edit_String: String_80; VAR Nchar: INTEGER);

i : INTEGER;
Stop : BOOLEAN;
Quit : String_4;

PROCEDURE Step;
BEGIN

IF Logical_Record_Pointer >= 512 'tHEN
BEGIN
Output_File_Pointer := Output_File_Pointer + 1;
FIND (Output_File_Data, Output:_File_Po inter) ;
READ (Output_File_Data, LogicaLl_Record) ;
Logical_Record_Pointer := 1;

END
ELSE BEGIN

Logical_Record_Po inter := Logicial_Record_Po inter + 1;
END;

END; {* Step *}

BEGIN
FOR i := 1 to 80 DO Edit_String[i] i= ' ';
Nchar := 0;
Stop := FALSE;
REPEAT
IF Logical_Record [Logical_Record_Pointer] <>

CHR(%0'15') THEN
BEGIN
Nchar:= Nchar + 1;
Edit_String[Nchar] :=
Logical_Record [Logical_Record_Pointer] ;

Step ;
END

ELSE BEGIN
Stop := TRUE;
Step; Step;

END;
UNTIL Stop;

FOR i := 1 to 4 DO Quit [I] : = Edit_£!tring [I] ;
IF Quit = 'QUIT' THEN

BEGIN
{ WRITELN (chr (bell)) ; }
BIOF_Backup_In_Output_File (Edit_String, Nchar);

END;
END; (* FIOF_Forward_In_Output_File *)

34

FUNCTION Change_To (Mode: PACKED ARRAY
[f..l: INTEGER] OF CHAR): BOOLEAN

VAR
i : INTEGER;
buuh : BOOLEAN;

BEGIN
Buuh := FALSE;
Change_To := TRUE;
i := f - 1;
REPEAT

i := i + 1;
IF Plot_String[i + 10] <> Mode[i] THEN Buuh := TRUE;

UNTIL (i = 1) OR Buuh;
IF Buuh THEN Change_To := FALSE;

END; {* Change_To *>

35

{*************************************!*********************}
PROCEDURE Numeric (String

Number Of Characters : INTEGER;

VAR
Deno
i, n, Zero
Negat ive_Va1ue

VAR Value
VAR Error

DOUBLE;
INTEGER;
BOOLEAN;

Stnng__40;

DOUBLE;
BOOLEAN);

BEGIN
Value := 0.0;
Zero := ORD('O') ;
N := Number_Of_Characters;
Error := FALSE;
Negative_Value := FALSE;
IF N <= 0 THEN Error := TRUE;
IF NOT Error THEN FOR i := 1 TO

IF NOT (String[I] IN ['0'..'9
Error := TRUE;

DO
',' ','+' ,'-']) THEN

IF NOT Error THEN
BEGIN

i := 0;
REPEAT

i := i + 1;
UNTIL (i = n) OR (String[I] <> ' ');

END;

IF NOT Error THEN
BEGIN

IF String[I] = '-' THEN
BEGIN
Negative_Value := TRUE;
i := i + 1;

END;
IF String[I] = '+' THEN i := i + 1;
IF i > n THEN Error := TRUE;

END;

IF (NOT Error) AND (i <= n) THEN
IF (String[I] <> '.') THEN
REPEAT

IF NOT (String[I] IN ['0' , . '9' , ' ']) THEN
Error := TRUE;

IF NOT Error THEN
Value := 10 * Value + (ORD(String[I]) - Zero) ;
i := i + 1;

UNTIL Error OR (i > n) OR (String[I] = '.');

IF NOT Error THEN
IF (String[I] = '.') THEN i := i + 1;

IF NOT Error AND (i <= n) THEN

36

BEGIN
Deno := 1.0;
REPEAT

Deno := Deno * 10;
IF NOT (String[I] IN ['O'..'9'j) THEN
Error := TRUE;

IF NOT Error THEN
Value := Value + (ORD(String[i]) -Zero)/Deno;

i := i + l;
UNTIL Error OR (i > n);

END;
IF NOT Error AND Negative_Value THEN Value := -Value;
IF Error THEN Value := 0.0;

END; (* Numeric *)

37

= FALSE;

PROCEDURE GA_Get_Annotation (VAR FromjTo : INTEGER;
VAR In__String : PACKED ARRAY[F. .L:INTEGER] OF CHAR;
VAR String : String_40; VAR Error : BOOLEAN);

VAR
j, i : INTEGER;

BEGIN
Error := TRUE;
i := FroinJTo - 1;
REPEAT

i := i + 1; i
IF In_String [!]<>'' THEN Erro^r
UNTIL NOT Error OR (i = L);

IF NOT Error THEN
BEGIN

String := Blank_40;
i := i - 1;
j := 0;
REPEAT

i := i + 1;
j := j + 1;
String[j] := In_String[i];

UNTIL (i = L) OR (j = 40);
FroinJTo := i;

END;
END; (* GA_Get_Annotation *)

PROCEDURE GV_Get_Value (VAR FromJTo : INTEGER;
VAR In_String : PACKED ARRAY [F..L:INTEGER] OF CHAR;
VAR Integer_Value: INTEGER; VAR Real_Value : DOUBLE;
VAR Error : BOOLEAN);

VAR
String_4 0;
DOUBLE;
INTEGER;
BOOLEAN;
BOOLEAN;

String
Value
ji i
First_Time
Finished

BEGIN
i := FroinJTo;
String := Blank_40;
j := 0;
First_Time := TRUE;
Finished := FALSE ;
REPEAT

i := i + 1;
IF FirstJTime AND (In_String [I]
First_Time := FALSE;
IF NOT FirstJTime THEN

BEGIN

) THEN

38

j := j + 1;
String[j] := In_String[i];
IF String[j] = ' ' THEN

BEGIN
Finished := TRUE;
j := j - 1;

END;
END;

IF (j = 40) OR (i = L) THEN Finished := TRUE;
UNTIL Finished;

IF j > 0 THEN
Numeric (String, j, Value, Error)

ELSE
Error := TRUE;

IF NOT Error THEN
BEGIN

From_To := i;
Real_Value := Value;
Integer_Value := TRUNC(Value);

END;
END; {* GV_Get_Value *}

39

PROCEDURE Slet_Blanks (In__String: PACKED ARRAY
[F..L: INTEGER] OF CHAR;
VAR Out_Strin^: string256

VAR
i,j : INTEGER;
Stop : BOOLEAN;

BEGIN
j := L -I- 1;
Stop := FALSE;

REPEAT
j := j - 1;
IF j = 0 THEN

stop := TRUE
ELSE

IF (In_String[j] <>
UNTIL Stop ;

') THEN S^op := TRUE;

Out__String := Substr (In_String, 1, j);
{ FOR i := 1 TO j DO Out_String[i] :=)= In_String[i] ;}
END; {* Slet_Blanks *}

40

PROCEDURE Write_Plane_Record_To_Oracle__Table;
VAR

i, Index, Numpnt
End_Record
Planerecfound
Plane__Record_File
P
Pkind_String
Varying_Label

INTEGER;
BOOLEAN;
BOOLEAN;
String_20;
Planes;
Varying[ll] of CHAR;
String256;

BEGIN
CURPOS_Cursor_Position (7,10);
WRITELN
('Enter the PLANES record file name translating from: ');

READLN (Plane_Record_File);

SELGRA_Select_Graphics ('B');
DBWIDT_Double_Width (24);
CURPOS_Cursor_Position (24,14);
WRITELN ('WORKING...');

OPEN (FILE_VARIABLE := Planefile,
FILE_NAME := Plane_Record_File,
HISTORY := OLD,
ACCESS_METHOD := DIRECT,
ERROR := CONTINUE);

RESET (Planefile, ERROR := CONTINUE);

CASE STATUS (Planefile) OF
-1 : BEGIN

WRITELN
('PLANE RECORD FILE IS EMPTY', crlf);

Planerecfound := FALSE;
END;

0 : BEGIN
Planerecfound := TRUE;

END;
OTHERWISE

BEGIN
WRITELN ('PLANE RECORD FILE NOT FOUND::> ' +

plane_record_file, crlf);
Planerecfound := FALSE;

END;
END; { of case }

IF Planerecfound THEN
RESET (Planefile, ERROR := CONTINUE);

i := 0;
REPEAT
i := i + 1;
FIND (Planefile, i);

41

READ (Planefile, p);
IF p.kind = ptom THEN
End_Record := TRUE ;

IF End_Record = FALSE THEN
BEGIN

Slet_Blanks (p.name, Varying_]jabel) ;
rdbBind strval
(SQL_pil, 1, Varying_Label, 0

CASE p.kind OF
strike
apparent
ppoint
field
comphor
compfol
fold
ptom

END; { of case }

rdbBind_strval
(SQL_pil, 2, Pkind_String, 0,

Pkind_String
Pkind_String
Pkind_String
Pkind_String
Pkind_String
Pkind_String
Pkind__String
Pkind_String

Err_Code);

= 'strike' ;
= 'apparent' ;
= 'ppoint' ;
= 'field' ;
= 'comphor' ;
= 'compfol' ;
= 'fold' ;
= 'ptom' ;

Err_Code);

Numpnt := p.n;
rdbBind_intval
(SQL_pil, 3, Numpnt, 0, Err_Code);

Index := 3;
FOR j := 1 TO 9 DO

BEGIN
Index := Index + 1;
rdbBind dbleval
(SQL_pil, Index, p.ne[j]

END;
D, Err_Code);

FOR j := 1 TO 3 DO
BEGIN

Index := Index + l;
rdbBind_dbleval
(SQL_pil, Index, p.nv[j], 0, Err_Code);

END;

FOR j := 1 TO 3 DO
BEGIN

Index := Index + 1;
rdbBind dbleval
(SQL_pil, Index, p.qv[j]

END;
0, Err_Code);

FOR j := 1 TO 3 DO
BEGIN

Index := Index + 1 ;
rdbBind_dbleval
(SQLjpil, Index, p.cv[j], 0, Err_Code);

42

END;

rdbBind_dbleval
(SQL_pil, 22, p.str, 0, Err_Code);

rdbBind_dbleval
(SQL_pil, 23, p.dip, 0, Err_Code);

rdbBind_dbleval
(SQL_pil, 24, p.dir, 0, Err_Code);

rdbBind_dbleval
(SQL_pil, 25, p.ms, 0, Err_Code);

rdbBind_dbleval
(SQL_pil, 26, p.md, 0, Err_Code);

rdbBind_dbleval
(SQL_pil, 27, p.mp, 0, Err_Code);

rdbExec_SQL (SQL_pil, Err_Code);
rdbCommit (Err__Code) ;

END;
UNTIL (i = 99) OR (End_Record = TRUE);
CLOSE (Planefile);

END; {* Write_Plane_Record_To_Oracle_Table *}

43

PROCEDURE PFOT_Planes_File_To_Oracle Translator;

BEGIN
IC_Invisible_Cursor;
CURPOS_Cursor_Position (24,10);
WRITELN
('Initializing communications with the ORACLE

database...');
IF rdblnit_comm (Err_Code) THEN

BEGIN
ERASCR_Erase_Screen;
SELSGR_Select_Special_Graphics;
IC_Invisible_cursor;
CURPOS_Cursor_Position (7,16);
WRITELN ('!');
FOR i := 17 TO 71 DO

BEGIN
CURPOS_Cursor_Position (7,i);
WRITELN ('q');

END;
CURPOS_Cursor_Position (7,71);
WRITELN ('k') ;
FOR i := 8 TO 11 DO

BEGIN
CURPOS_Cursor_Position (1,71);
WRITELN ('X');

END;
CURPOS_Cursor_Position (12,71);
WRITELN (' j ') ;
FOR i := 70 DOWNTO 17 DO

BEGIN
CURPOS_Cursor_Position (12,i);
WRITELN ('q');

END;
CURPOS_Cursor_Position (12,16);
WRITELN ('m');
FOR i := 11 DOWNTO 8 DO

BEGIN
CURPOS_Cursor_Position (i,16);
WRITELN ('x');

END ;
SELASC_Select_ASCII;
CURPOS_Cursor_Position (9,20);
WRITELN (' Enter Oracle Account tlser Name: ') ;
READLN (User_Name) ;
CURPOS_Cursor_Position (10,20);
WRITELN ('Enter Oracle Account Password: ')
READLN (Pass_Word);
ERASCR_Erase_Screen;
CURPOS_Cursor_Position (2,10);
WRITELN
('Logging onto Oracle Acount: ', User_Name, '...');
IF rdbLogon (User_Name, Pass_Word, Err_Code) THEN

44

BEGIN
CURPOS_Cursor_Position (5,10);
WRITELN

('Enter Oracle TABLE Name Translating TO: ');
READLN (Table_Name);
CS_Capitalise_String (Table_Name);
Slet_Blanks (Table_Name, Varying_Label2);
sql_command:='insert into '+ Varying_Label2 +

'values(:sname,:skind,:i
numpnt,:dnel,:dne2,:dne3,:dne4,
:dne5,:dne6,:dneV,:dne8 , :dne9,
:dnvl,:dnv2,:dnv3,:dqvl,:dqv2,
:dqv3,:dcvl,:dcv2,:dcv3,:dstrike,
:ddip,:ddir,:dms,:dmd,:dmp)';

IF rdbSubmit_SQL
(sql_command, sql_pil, err_code) THEN
BEGIN

Write_Plane_Record_To_Oracle_Table;
rdbRelease_SQL (SQL_jpil, err_code) ;

END;
IF Err_Code <> 1 THEN
WRITELN

('I am unable TO submit your SQL command', crlf);
rdbLogoff (Err_Code);

END;
IF Err_Code <> 1 THEN
WRITELN
('I am unable TO logon your ORACLE account', crlf);

rdbAlldone (err_code) ;
SELASC_Select_ASCII;
SELGRA_Select_Graphics ('O');
VC_Visible_Cursor;

END;
END; {* PFOT_Planes File_To Oracle Translator *}

45

PROCEDURE Draw__Line_To_Screen (VAR loc: locationType) ;

BEGIN
AGIsymBlk_start (legendA .symBlk, AGI_LINE
WITH loc DO

AGIdraw (x, y);
AGIsymBlk_end (legendA .symBlk, AGI__LINE

END; {* Draw_Line_To_Screen *}

PROCEDURE Draw_Point_To_Screen (VAR loc: locationType);

BEGIN
AGIsymBlk_start (legendA .symBlk, AGI_POINT);
WITH loc DO
AGIdraw_circle (x, y, 100.0);

AGIsymBlk_end (legendA .symBlk, AGI__POINT);
END; {* Draw_Point_To_Screen *}

PROCEDURE Move_To_Start_Of_Line (VAR loc: locationType);

BEGIN
set_cart_infoLoc (loc, MIDDLE_CENT|:R, cartE) ;
AGIsymBlk_start (legendA .symBlk,
WITH loc DO

AGImove (x, y);
AGIsymBlk_end (legendA .symBlk, AGI LINE);

END; {* Move_To_Start_Of_Line *}

PROCEDURE Move_To_Node_Location (VAR loc: locationType);

BEGIN
set_cart_infoLoc (loc, MIDDLE_CENT]2R, cartE) ;
AGIsymBlk_start (legendA .symBlk, A(3I_POINT
WITH loc DO

AGImove (x, y);
AGIsymBlk_end (legendA .symBlk, AGI_POINT);

END; {* Move_To_Node_Location *}

46

PROCEDURE OTT_Object_To_Table (XjDbject, YJDbject,
ZJDbject: DOUBLE ;
VAR X_Table, Y_Table,
Z_Table: DOUBLE) ;

VAR
hg, ht : Real_Array_4 ;
i, j : INTEGER;
Error : BOOLEAN;

BEGIN
hg[l] := XjDbject;
hg[2] := YJDbject;
hg[3] := ZJDbject;
hg[4] := 1.00;

IF (Transformation = normal_drift) THEN
BEGIN
Ground_To_Driftl_Periphery

(Tunnel_Parameters, hg, hg, Error);
hg[2] := hg[2] + Tunnel_Parameters.per/2.00;
hg[4] := 1;

END;
IF (Transformation = radialjirift) THEN
BEGIN

Ground_To_Drift2_Periphery
(Tunnel_Parameters, hg, hg, Error);

hg[2] :=hg[2] + Tunnel_Parameters.per/2.00;
hg[4] := i;

END ;
IF (Transformation = shaft) THEN
BEGIN
Ground_To_Shaft_Periphery

(Tunnel_Parameters, hg, hg, Error);
hg[l] := hg[l] + Tunnel_Parameters.per/2.00;
hg[4] := i;

END;

FOR i := 1 TO 4 DO
BEGIN

ht[i] := 0;
FOR j := 1 TO 4 DO

ht[i] := ht[i] + gtt_mat[i,j] *
END;

FOR i := 1 TO 3 DO
ht[i] := ht[i] / ht[4];

X_Table := ht[l]; Y_Table := ht[2]; Z_Table := ht[3];
END; {* OTT_Object_To_Table *}

47

{**}
PROCEDURE Translate_Coordinates (VAR kYZ_Measured:

RealiArray_3;
VAR Error: BOOLEAN;
VAR +oc: locationType);

BEGIN
OTT_Obj ect_To_Table

(XYZ_Measured[1], XYZ_Measured[2], XYZ_Measured[3],
X_Table_out, Y_Table_out, Z_Table_out);

world3D_to_loc (METERS, X_Table_put,
Y_Table_out (
Z_Table_out, loc);

IF Minimax THEN
BEGIN

IF X_Table_out > S_X_Max THEN
BEGIN

S_X_Max := X_Table_out;
CURPOS_Cursor_Position (5,8);
WRITELN ('X MAX: ', S_X_Max:7:3);

END;
IF X_Table_out < S_X_Min THEN

BEGIN
S_X_Min := X_Table_out;
CURPOS_Cursor_Position (5 r 45);
WRITELN ('X MIN: ', S_X_Min:7:3);

END;
IF Y_Table_out > S_Y_Max THEN

BEGIN
S_Y_Max := Y_Table_out;
CURPOS_Cursor_Position (8 L8);
WRITELN ('Y MAX: ', S_YJ!ax:7:3) ;

END;
IF Y_Table_out < S_Y_Min THEN
BEGIN

S_Y_Min := Y_Table_out;
CURPOS_Cursor_Position (8,45);
WRITELN ('Y MIN: ', S_Y_Min:7:3);

END;
END;

END; {* Translate_Coordinates *}

48

PROCEDURE Get_Point (VAR loc: locationType;
VAR flag: BOOLEAN);

VAR
i : INTEGER;

BEGIN
IF First_Point THEN

BEGIN
FOR i:= 1 TO 3 DO

XYZ_Measured[i] := Point_Buffer[i];
IF NOT Error THEN

BEGIN
Translate_Coordinates

(XYZ_Measured, Error, loc);
END

ELSE
BEGIN
WRITELN (Error, crlf);
WRITELN (SW_File, Error, crlf);
WRITELN (Check_String, crlf);
WRITELN (SW_File, Check_String, crlf);

END;
CASE ET_Element OF
Et_Point : BEGIN

Move_To_Node_Location (loc);
Draw_Point__To_Screen (loc) ;

END;
Et_Line : BEGIN

Move_To_Start_Of_Line (loc);
First_Point := FALSE;

END;
END; {of case)

END
ELSE

BEGIN
Flag := FALSE;
FIOF_Forward_In_Output_File (Plot_String, Nchar);
FOR i := 1 TO 10 DO

Check_String[i] := Plot_String[i];
CASE Check_String[l] OF

' ' : BEGIN
J := 1;
GV_Get_Value (j, Plot_String,

i, XYZ_Measured[l], Error);
GV_Get_Value (j, Plot_String,

i, XYZ_Measured[2], Error) ;
GV_Get_Value (j, Plot_String,

i, XYZ_Measured[3], Error) ;
IF NOT Error THEN

BEGIN
Translate_Coordinates

(XYZ_Measured, Error, loc);
END

49

ELSE
BEGIN
WRITELN (Error, crlf);
WRITELN (SW_File, Error, crlf) ;
WRITELN (Check String, crlf);
WRITELN

(SW__Filo, Check__String, crlf) ;
END;

Draw_Line_To_Screen
END;

OTHERWISE
BEGIN

Look__Forward := FALSE;
Flag := TRUE;

END;
END; {of case}

END;
END; {* Get_Point *}

(loc);

{**}
PROCEDURE Process_New_Edge (VAR edgeEt Element);

BEGIN
add_id_jto_end (topo_recnr (edgeE), id_list) ;

END; {* Process_New_Edge *}

PROCEDURE Process_New_Node (VAR nodeE : Element);

BEGIN
add_id_to_end (topo_recnr (nodeE), node_list);

END; {* Process_New_Node *}

I**}
PROCEDURE ICL_Initialize_Cart_And_Id;

BEGIN
init_new_cart (0, varying_label, cartE);
CASE ET_Element OF

ET_Point: init_id_list (node_list);
ET_Line : init__id_list (id_list) ;

END; { of case }
END; {* ICL_Initialize_Cart_And_Id *}

50

}
PROCEDURE Build_Or_Abort;
BEGIN

IF Error_Raised THEN
BEGIN

Display_Error (output);
trans_abort;

END
ELSE

BEGIN
CASE ET_Element OF
ET_Point : BEGIN

build_point
(node_list, themE, cartE);

transcend;
free_id_list (node_list);

END;
ET_Line : BEGIN

build_line (id_list, themE, cartE);
transcend;
free_id_list (id

END;
END; {of case)

END;
END; {* Build_Or_Abort *}

PROCEDURE GS_Get_String;

BEGIN
WRITELN ('Pen down and drawing... ', Geo_Label, crlf);
WRITELN
(SW_File, 'Pen down and drawing... ', Geo_Label, crlf);
Slet_Blanks (Geo_Label, Varying_Label);
ICL_Initialize_Cart_And_Id;
First_Point := TRUE;
Get_Point (Start_Loc, Flag);
Collect_String

(Get_Point, Process_New_Edge,
Coll_Parm, Start_Loc, End_loc);

Build_Or_Abort;
END; {* GS_Get_String *}

51

{**}
PROCEDURE GN Get Node;

Varying_Label, crlf);

BEGIN
WRITELN

('Pen down and drawing NODE... '
WRITELN (SW_File,'Pen down and drawing NODE... ', +

Varying_Label, crlf);
ICL_Initialize_Cart_And_Id;
First_Point := TRUE;
Get_Point (start_loc, flag);
Greate_Isol_Node (start_loc, nodeE);
Process_New_Node (nodeE);
Bu i1d_Or_Abort;

END; {* GN_Get_Node *}

I**}
PROCEDURE IST_Initialize_And_Store_Theme;
BEGIN

IF NOT them_found (Theme_Name, themE) THEN
BEGIN
WRITELN

WRITELN
('Initializing New Theme:

(SW_File,'Initializing New Theme:

', Theme_Name f crlf);

', Theme__Name, crlf);
WRITELN (crlf);
WRITELN (SW_File,crlf);
CASE ET_Element OF

ET_Point : Init_New_Theme
(Theme_Name, POIN, themE);

ET_Line : Init_New_Theme
(Theme_Name, LINE, themE);

END; (of case}
store_theme (themE);

END; j

Legend := legend_line (Theme_Name, ^eg_Name, new_leg);
END; {* IST_Initialize_And_Store_Them^ *}

52

PROCEDURE
GPCGTT_Geo_Program_Compute_Ground_To_Trans_Transformation

(VAR Par: Plot_Definition_Record;
VAR GtT: Real_Array_4_4);

VAR
i, j : INTEGER;
xyzdl, xyzgl, xyzg2 : Real_Array_3;
W, H, B : DOUBLE;
Error : BOOLEAN;

BEGIN
WITH Par DO

BEGIN
FOR i := 1 TO 4 DO

BEGIN
FOR j := 1 TO 4 DO GtT[i,j] := 0;
GtT[i,i] := 1.0

END;

IF (Trans_Type[l] = 'O')
OR (Trans_Type[l] = 'P')
OR (Trans_Type[l] - 'D')
OR (Trans_Type[l] = 'I') THEN

BEGIN
CGTTM_Compute_Ground_To__Trans_Matrix (Par, GtT) ;

END;

IF (Trans_Type[l] = 'N')
OR (Trans_Type[l] = 'R')
OR (Trans_Type[1]

BEGIN
xyzdl[1]

= 'S') THEN

xyzdl[2]
xyzdl[3]
xyzgl[1]
xyzgl[2]
xyzgl[3]
xyzg2[l]
xyzg2[2]
xyzg2[3]
W
H
B

= 0 00;
= 0.00;
= Gamera_Height;
= X_Index;
= Y_Index;
= Z_Index;
= E_Factor;
= N_Factor;
= H_Factor;
= View_Direction;
= Zenith_Angle;
= Focal_Length;

IF (Trans_Type[l] = 'N') THEN
BEGIN
Compute_Driftl_Transformation_Parameters

(xyzdl, xyzgl, xyzg2, W, H, B,
Tunnel_Parameters, Error);

Y_Trans_Index := - Tunnel_Parameters.per/2.00;
Ver_Size :=

Tunnel_Parameters.per*100 O/Y_Plot_Scale;
END;

53

IF (Trans_Type[l] = 'R') THJEN
BEGIN

Compute_Drift2_Transfornation_Parameters
(xyzdl, xyzgl, xyzg2, W, H, B,
Tunnel_Parameters, :2rror) ;

Y_Trans_Index := - Tunnsl_Parameters.per/2.00;
Ver_Size :=

Tunnel_Parameters.per*1000/Y_Plot_Scale;
END;

IF (Trans_Type[l] = 'S') THEN
BEGIN

Compute_Shaft_Transformation_Parameters
(xyzdl, xyzgl, xyzg2, B,
Tunnel_Parameters, :Error);

X_Trans_Index := - Tunn2l_Parameters.per/2.00;
Hor_Size :=

Tunnel_Parameters.£er*1000/X_Plot_Scale;
END;

END;

IF Trans_Type[l] = 'O' THEN
Trans format ion

IF Trans_Type[1] =
Trans format ion

IF Trans_Type[1] =
Transformation

IF Trans_Type[1] =
Transformation

IF Trans_Type[1] =
Transformation

IF Trans_Type[1] =
Transformation

IF Trans_Type[1] =
Transformation

= orthographic
'P' THEN
= perspective;
'I' THFN
= isometric;
'D' THEN
= dimetric;
'N' THEN
= normal_drift;
'R' THEN
= radial_drift;
'S' THEN
= shaft;

END; {of with)
END;
{GPCGTT_Geo_Program_Compute_Ground_Toi Trans_Transformation}

54

PROCEDURE CPAM_Change_Plot_Area_Modify
(VAR Area__Number: INTEGER) ;

VAR
Plotfile : FILE OF Plot_DefinitionJRecord;
i, Field : INTEGER;
String : String_40;
Save__String: PACKED ARRAY [1.. 36] OF CHAR;

BEGIN
OPEN FILE_VARIABLE

FILE_NAME
HISTORY
ACCESS_METHOD
ERROR

= Plot file,
= Plot_Par_File_Name,
= OLD,
= DIRECT,
= CONTINUE) ;

RESET (Plotfile, ERROR := CONTINUE);
FIND (Plotfile, Area_Number) ;
READ (Plotfile, Current_Plot_Area) ;
CLOSE (Plotfile) ;

Area_Name := Current_Plot_Area.Area_Name;
CURPOS_Cursor__Position (2,15);
WRITELN

(' Plot_Def initionJRecord = ' , Area__Number) ;
WRITELN (SW_File,' Plot__Def inition_Record = ' ,

Area_Number) ;
WITH Current_Plot_Area DO

BEGIN
CURPOS_Cursor_Position (5,3) ;
WRITELN ('area name: ', area_name) ;
WRITELN (SW__File, 'area name: ', area_name) ;
CURPOS_Cursor__Posit ion (7,3) ;
WRITELN ('transformation type: ', trans_type) ;
WRITELN (SW__File, 'transformation type: ',

trans_type) ;
CURPOS_Cursor__Position (10,3) ;
WRITELN ('Ground Index Point (X): ', X__Index: 5:2)
WRITELN (SW__File, 'Ground Index Point (X): ',

X__Index:5:2) ;
CURPOS_Cursor__Position (11,3) ;
WRITELN ('Ground Index Point (Y) : ',
WRITELN (SW_File, 'Ground Index Point (Y) :

Y_Index:5:2) ;
CURPOS_Cursor_Position (12 , 3) ;
WRITELN ('Ground Index Point (Z) :
WRITELN (SW__File, 'Ground Index Point (Z) :

Z_Index:5:2) ;
CURPOS__Cursor_Position (14,3);
WRITELN ('View Direction from south (degrees):

View_Direct ion : 5 : 2) ;
WRITELN

(SW_File, 'View Direction from south (degrees):
View_Direction:5:2) ;

Y__Index: 5:2)
',

Z_Index: 5: 2)
'

55

CURPOS_Cursor__Position (24,40) ?
WRITELN (' RETURN TO Continue...');
READLN;
ERASCR_Erase_Screen;

END; (of with)

GPCGTT__Geo_Pr ogram_Compute__Ground_To_JTrans_jrrans format ion
(Current__Plot_Area, gtt_mat) ;

END; {* CPAM_Change_Plot_Area_Modify *}

56

PROCEDURE Change__Mode ;
VAR

k : INTEGER;

BEGIN
IF Check__String = 'CHANGE TO ' THEN

BEGIN
Look__Forward := TRUE;
CASE Plot__String[ll] OF

'P' : BEGIN
IF ChangeJTo ('PLOT AREA') THEN

BEGIN.
j := 20;
GV_Get_Value (j, Plot_String, i, r,

Error);
WRITELN
('found line that contains: CHANGE' +
'TO PLOT AREA ',i, crlf);

WRITELN
(SW__File, 'found line that contains:' +
'CHANGE TO PLOT AREA ',i, crlf);
IF i <> First__PA THEN
BEGIN
WRITELN
('Found new PLOT AREA number: ', i,
crlf);

WRITELN (SW_File,'Found new' +
'PLOT AREA number; ', crlf);

WRITELN
('Do you want TO change PLOT' +

'AREA? (Y/N)', crlf);
WRITELN (SW_File,'Do you want' +

'to change PLOT AREA? (Y/N)',
crlf);

READLN (response);
WRITELN (SW_File, response);
IF response IN ['Y^'y'] THEN
BEGIN

First_PA := I;
CPAM_Change_Plot_Area_Modify (I);

END;
END;
END;

IF Change_To ('PEN NUMBER') THEN
BEGIN

J := 21;
GV__Get__Value (j, Plot__String, i, r,

Error);
WRITELN
('found line that contains:' +
'CHANGE TO PEN NUMBER ', i,crlf);

WRITELN

57

(SW_File,'found
' CHANGE TO PEN

line that contains:' +
NUMBER ', i,crlf);

Pen_num_BUF := :L;
END;

IF Change_To ('PEN UP') THEN
BEGIN
WRITELN ('found line that contains: +

'CHANGE TO PENUP', crlf);
WRITELN (SWJFile,'found line that' +
'contains: CHANGE TO PENUP', crlf);

Location:^ terminate;
END;

IF Change_To ('PEN DOWN') THEN
BEGIN
ET_Element := |ST_Line;
Theme_Name := Line_type_BUF;
IST_InitializeI And_Store_Theme;
GS_Get_String;'

END;
END;

L' : BEGIN
IF Change_To ('LABfiL') THEN
BEGIN
j := 16;
GA_Get_Annotatio:n (j, Plot_String,

Annotation, Error);
FOR k:= 1 TO 20 DO

Geo_Label [k]
WRITELN ('found

:= Annotation[k];
Line that contains:' +

'LABEL: ',Geo_Label, crlf);
WRITELN (SWJFile,'found line that' +

'conta ins: LABEL: ',Geo_Label,
crlf);

END;
IF Change_To ('LINE TYPE') THEN
BEGIN

j := 20;
GV_Get_Value (j, Plot_String, i, r,

Error);
WRITELN
('found line that contains: CHANGE' +

' TO LINE TYPE ', i,crlf);
WRITELN
(SW_File,'found line that contains:' +
'CHANGE TO LINt TYPE ', i,crlf);

k := 0;
REPEAT

k := k + l;
UNTIL (I = LT_Store[k].LT_Number) OR

(k = Max_Array);
IF (k = Max_Array) AND

(i <> LT_Store[k].LT_Number) THEN
BEGIN

58

WRITELN
('Did not find your Line Type...',
crlf);

WRITELN
(SW_File,'Did not find your Line'+
'Type...', crlf);

END;
GA_Get_Annotation (j, Plot_String,

Annotation, Error);
CS_Capitalise_String (Annotation);
Slet_Blanks (Annotation,

Varying_Label);
IF Varying_Label = LT_Store[k].LT_Text

THEN BEGIN
WRITELN (crlf);
WRITELN ('MATCH....', crlf);
WRITELN ('Line Annotation: ',

LT_Store[k].LTJText, cr1f);
WRITELN(crlf);
WRITELN (SW_File, crlf);
WRITELN

(SW_File, 'MATCH....', crlf);
WRITELN

(SW_File, 'Line Annotation: ',
LT_Store[k].LT_Text, cr1f);

WRITELN (SW_File, crlf);
END

ELSE
BEGIN
WRITELN(crlf);
WRITELN ('MISMATCH....', crlf);
WRITELN ('FOUND: ',

Varying_Label, crlf);
WRITELN (' ', crlf);
WRITELN (' USED: ',

LT_Store[k].LTJText, cr1f);
WRITELN (crlf);
WRITELN (SW_File, 'MISMATCH....',

crlf) ;
WRITELN (SW_File, 'FOUND: ',

Varying_Label, crlf);
WRITELN (SW_File, ' ',

crlf) ;
WRITELN (SW_File, ' USED: ',

LT_Store[k].LT_Text, cr1f);
END;

Line_type_BUF := LT_Store[k].LT_Text;
END;

END;
BEGIN

IF Change_To ('CONT LINE ON') BEGIN
BEGIN
WRITELN

59

('found line that contains: CHANGE' +
' TO CONT LINE

WRITELN
(SW_File,'found

ON', crlf);

line that contains:' +
' CHANGE TO CONT LINE ON', crlf);
Cont_line_BUF :== TRUE;

END;
IF Change_To ('CONT LINE OFF') THEN

BEGIN
WRITELN
('found line that contains: CHANGE' +
' TO CONT LINE OFF', crlf);
WRITELN
(SW_File,'found line that contains:' +
' CHANGE TO CONT LINE OFF', crlf);
Cont_line_BUF :== FALSE;

END;
END
BEGIN

IF Change_To ('SLKtK LINE ON') THEN
BEGIN
WRITELN
('found line that contains: CHANGE' +

' TO SLICK LINE ON', crlf);
WRITELN
(SW_File,'found line that contains:' +
' TO CHANGE TO $LICK LINE ON', crlf);
Slick_line_BUF t= TRUE;

END;
IF Change_To ('SLICK LINE OFF') THEN

BEGIN
WRITELN
('found line that contains: CHANGE' +
' TO SLICK LINE OFF', crlf);
WRITELN
(SW_File,'found; line that contains:' +
' TO CHANGE TO SLICK LINE OFF', crlf);
Slick_line_BUF t= FALSE;

END ;
IF Change_To ('SYMBOL TYPE') THEN

BEGIN
j := 22;
GV_Get_Value (j, Plot_String, i, r,

Error);
WRITELN
('found line that contains: CHANGE' +
' TO SYMBOL TYPE ',1, crlf);

WRITELN
(SW_File,'founi line that contains: '+
' CHANGE TO SYMBOL TYPE ',1, crlf);

k := 0;
REPEAT

k := k + 1;

60

UNTIL (i = ST_Store[k].ST__Number) OR
(k = Max_Array) ;

IF (k = Max_Array) AND
(i <> ST_Store[k].ST_number) THEN

BEGIN
WRITELN ('Did not find your' +

'Symbol Type...', crlf);
WRITELN (SW_File,'Did not find' +

'your Symbol Type...', crlf);
END;

GA_Get_Annotation (j, Plot_String,
Annotation, Error);

CS_Capitalise_String (Annotation);
Slet_Blanks (Annotation,

Varying__Label);
IF Varying_Label = ST_Store[k].ST_Text
THEN BEGIN
WRITELN (crlf);
WRITELN ('MATCH....', crlf);
WRITELN ('Symbol Annotation: ',

ST_Store[k].STJText, crlf);
WRITELN (crlf);
WRITELN (SW_File,'MATCH....',

crlf);
WRITELN (SW_File,'Symbol' +

'Annotation: ',
ST_Store[k] .ST_Text, crlf) ;

END
ELSE

BEGIN
WRITELN (crlf);
WRITELN ('MISMATCH....', crlf);
WRITELN ('FOUND: ', Varying_Label,

crlf) ;
WRITELN (' ', crlf);
WRITELN (' USED: ',
ST_Store [k]. ST__Text, crl f) ;
WRITELN (crlf);
WRITELN (SW_File,'MISMATCH....',

crlf);
WRITELN (SW_File,'FOUND: ',

Varying^Label, crlf);
WRITELN (SW_File,' ',

crlf);
WRITELN (SW_File,' USED: ',

ST_Store[k].ST_Text, crlf);
END;

Sym_type_BUF := ST_Store[k].ST_Text;
END ;

END;
BEGIN

IF Change_To ('OBJECT') THEN
BEGIN
ET Element := ET Point;

61

Theme_Name := S;fm_type_BUF;
IST_Initialize_jVnd_Store_Theme;
j := 17;
GA_Get_Annotation (j, Plot_String,

Annotation, Error);
Slet_Blanks (Annotation,

VaJrying_Label) ;
WRITELN
('found line that contains: CHANGE' +
' TO OBJECT ', Varying_Label, crlf);

WRITELN
(SW_File,'found line that contains:'+
' CHANGE TO OBJECT ', Varying_Label,
crlf);

WRITELN ('Objec-: notation: ',
Varying__Label r crlf) ;

WRITELN (SW_File,'Object notation: ',
Varying_Label, crlf);

IF (Varying_Label = 'DL') OR
(Varying_Label = 'DV') THEN
BEGIN
WRITELN ('Strike and Dip: ',

SD_Buf, crlf);
WRITELN (£w_File,'Strike and

bip: ', SD_Buf, crlf);
END;

IF (Varying_Label = 'PL') OR
(Varying_Label = 'PV') THEN
BEGIN
WRITELN ('Plunge and Trend: ',

SD_Buf, crlf);
WRITELN (SW_File,'Plunge and' +

' Trend: ', SD_Buf, crlf);
END;

GV_Get_Value (j, Plot_String, i, r,
Error);

WRITELN ('Symbol Rotation: ', r:6:4,
crlf) ;

WRITELN (SW_Fi
r:6:4

Le,'Symbol Rotation: ',
crlf);

GA_Get_Annotation (j, Plot_String,
Annotation, Error);

Slet_Blanks (Ahnotation,
Varying_Label);

WRITELN ('object label: ',
Varying_Label, crlf);

WRITELN (SW_File,'object label: ',
Varying_Label, crlf);

GN_Get_Node;
END;

END;
BEGIN

IF Change_To ('ATTITUDE') THEN
BEGIN

62

WRITELN
('found line that contains: CHANGE' +
' TO ATTITUDE', crlf);
WRITELN
(SW_File,'found line that contains:' +
' CHANGE TO ATTITUDE', crlf);
j := 18;
GV_Get_Value (j, Plot_String, i, r,

Error);
Rotation_Buf : = r;
WRITELN ('Symbol Rotation: ', r:6:4,

crlf);
WRITELN (SW_File,'Symbol Rotation: ',

r:6:4, crlf);
GA_Get_Annotation (j, Plot_String,

Annotation, Error);
Slet_Blanks (Annotation,

Varying_Label);
SD_Buf := Varying_Label;

END;
END;

OTHERWISE;
END;

END;
END; {* Change__Mode *}

63

PROCEDURE RLTA_Read_Line_Type_Array;
VAR

k : INTEGER;

BEGIN
OPEN (FILE_VARIABLE

FILE_NAME
HISTORY
ACCESS_METHOD
ERROR

:= LineJTypeS,
:= 'Line_Typ6s.table',
:= OLD,
:= SEQUENTIAL,
:= CONTINUE)

RESET (Line_Types, Error := CONTINUE) ;

k := 0;
WHILE NOT EOF (LineJTypes) DO

BEGIN
k := k + 1;
READLN (Line_Types, Read_File_String);
j := 0;
GV_Get_Value (j, Read_Fi1e_String, Line_Type_Number,

r, Error);
LT_Store[k].LT_Number := Linetype_Number;
GA_Get_Annotation (j, Read_File__String,

Line_Type_T^xt, Error);
CS_Capitalise_String (Line__Type_Text) ;
Slet_Blanks (Line_Type_Text, Varying_Label);
LT_Store[k].LTJText := Varying_Label;

END;
CLOSE (Line_Types);

END; {* RLTA_Read_Line_Type_Array *}

64

PROCEDURE RSTA_Read_Symbol_Type_Array;
VAR

k : INTEGER;

BEGIN
OPEN (FILE_VARIABLE := Symbol_Types,

FILE_NAME := 'SymbolJTypes.table',
HISTORY := OLD,
ACCESS_METHOD := SEQUENTIAL,
ERROR := CONTINUE);

RESET (Symbol_Types, Error := CONTINUE) ;

k := 0;
WHILE NOT EOF (SymbolJTypes) DO

BEGIN
k := k + 1;
READLN (Symbol_Types, Read_File_String);
"l * ~ o *
GV_Get_Value (j, Read_File_String,

Symbol_Type-Number, r, Error);
ST_Store[k].ST_Number := Symbol_Type_Number;
GA_Get_Annotation (j, Read_File_String,

Symbol_Type_Text, Error);
CS_Capitalise_String (Symbol_Type_Text);
Slet_Blanks (Symbol_Type_Text, Varying_Label);
ST_Store[k],ST_Text := Varying_Label;

END;
CLOSE (SymbolJTypes);

END; {* RSTA_Read_Symbol_Type_Array *}

V

PROCEDURE OCLT_Open_and_Check_Line_Types;
VAR

Retry : BOOLEAN;
Close_it : BOOLEAN;

BEGIN
Close_it := FALSE;
OK := FALSE;
Retry := FALSE;
ERASCR_Erase_Screen;
SELGRA_Select_Graphics ('B');
CURPOS_Cursor_Position (20,20);
SELGRA_Select_Graphics ('O');

OPEN (FILE_VARIABLE := Line_Types,
FILE_NAME := 'Line_Types.table'
HISTORY := OLD,
ACCESS_METHOD := SEQUENTIAL,
ERROR := CONTINUE);

65

RESET (LineJTypes, Error := CONTINlfE) ;

CASE STATUS (LineJTypes) OF
-1 : BEGIN

CURPOS_Cursor_Position (20,20);
WRITELN ('FILE IS EMPTY...CANNOT CONTINUE' +

' WITH TRANSLATION' , crlf);
CURPOS_CursorJPositiOn (24,50);
WRITELN ('RETURN TO Continue...');
OK := FALSE;
Close_it := TRUE;

END;
0 : BEGIN

CURPOS__Cursor__Positii>n (20,20);
OK := TRUE;
Close_it := TRUE;

END;
OTHERWISE

BEGIN
CURPOS_Cursor_Positibn (20,20);
WRITELN ('FILE NOT FOUND:::::> ' +

' LineJTypes.table', crlf);
CURPOS_Cursor_J?osition (24,50) ;
WRITELN ('RETURN TO pontinue...');
OK := FALSE;
Close_it := FALSE;

END;
END; {of case}
IF Close_it THEN

Close (Line_Types);
END; {* OCLT__Open_and_Check_Line_Types *}

66

PROCEDURE OCST_Open_and_Check_Symbol_Types;

VAR
Retry : BOOLEAN;
Close_it : BOOLEAN;

BEGIN
Close_it := FALSE;
OK := FALSE; {global for continue)
Retry := FALSE;
ERASCR_Erase_Screen;
SELGRA_Select_Graphics ('B');
CURPOS_Cursor_Position (20,20);
SELGRA_Select_Graphics ('O');

OPEN (FILE_VARIABLE := Symbol_Types,
FILE_NAME := 'Symbol_Types.table',
HISTORY := OLD,
ACCESS_METHOD := SEQUENTIAL,
ERROR := CONTINUE);

RESET (Symbol_Types, Error := CONTINUE) ;

CASE STATUS (Symbol_Types) OF
-1 : BEGIN

CURPOS_Cursor_Position (20,20);
WRITELN ('FILE IS EMPTY... CANNOT CONTINUE' +

' WITH TRANSLATION' , crlf);
CURPOS_Cursor_Position (24,50);
WRITELN ('RETURN TO Continue...');
OK := FALSE;
Close_it := TRUE;

END;
0 : BEGIN

CURPOS_Cursor_Position (20,20);
OK := TRUE;
Close_it := TRUE;

END;
OTHERWISE

BEGIN
CURPOS_Cursor_Position (20,20);
WRITELN ('FILE NOT FOUND:::::> ' +

' Symbol_Types.table', crlf);
CURPOS_Cursor_Position (24,50);
WRITELN ('RETURN TO Continue...');
OK := FALSE;
Close_it := FALSE;

END;
END; {of case)
IF Close_it THEN

Close (Symbol_Types);
END; {* OCST_Open_and_Check_Symbol_Types *)

67

PROCEDURE SKP_Setup_KGIS_Parameters;

BEGIN
WITH colljparm DO

BEGIN
node_snap_dist = 30.0;
{ 3*sd, here 30/1000 of a foot }
edge_snap_d1st
extend_dist
peel_dist
deviation_dist
trim_dist

END;

30.0
30.0 ;
30.0 ;
0.0000001

30.0 ;

map_extents (Xlow, Ylow, Xhigh, Yhlgh) ;
world_TO_range (METERS, Xlow, Xhigh, Ylow, Yhigh,

db_range);
display_init (db^range);
top_window_init (db_range);
build_tdisp;

END; {* SKP_Setup_KGIS_Parameters *}

68

PROCEDURE OCG_Open_and_Check_GeoProgram_File;
VAR

Retry : BOOLEAN;
Close_it : BOOLEAN;

BEGIN
REPEAT

Close_it := FALSE;
OK := FALSE;
Retry := FALSE;

ERASCR_Erase_Screen;
CURPOS_Cursor_Position (5,10);
WRITELN
('Enter geofile name for translation TO KGIS: ');

WRITELN
(SW_File,'Enter geofile name for translation TO KGIS: ');
READLN (GEOP_File_Name);
WRITELN (SW_File,GEOP_File_Name);
CS_Capitalise_String (GEOP_File_Name);
Slet_Blanks (GEOP_File_Name, Varying_Label2);
SELGRA_Select_Graphics (' B');
CURPOS_Cursor_Position (20,20);
WRITELN ('PLEASE WAIT.....');
SELGRA_Select_Graphics ('O');

OPEN (FILE_VARIABLE := output_file_data,
FILE_NAME := Varying_Label2,
HISTORY := OLD,
ERROR := CONTINUE);

RESET (Output_File_Data, ERROR := CONTINUE);

CASE STATUS (Output_File_Data) OF
-1 : BEGIN

CURPOS_Cursor_Position (20,20);
WRITELN ('FILE IS EMPTY', crlf);
WRITELN ('Would you like TO enter' +

' GEOPROGRAM name again? (Y/N) ');
READLN (response);
IF response IN ['Y', 'y'] THEN

BEGIN
Retry := TRUE;
Close_it := TRUE;

END
ELSE

BEGIN
Retry := FALSE;
OK := FALSE;
Close_it := TRUE;

END;
END;

0 : BEGIN

69

CURPOS_Cursor_Position (20,20);
WRITELN ('GeoProgram File,OK ');
WRITELN (SW_File,'GeoProgram File,OK ');
Retry := FALSE;
OK := TRUE;
Close_it := TRUE;

END;
OTHERWISE

BEGIN
CURPOS_Cursor_Position (20,20);
WRITELN ('FILE NOT FOUND:::::> ' +

Varying_Lapel2 , crlf);
WRITELN ('Would you like TO enter' +

' GEOPROGRAM name again? (Y/N) ');
READLN (response);
IF response IN ['Y', 'y'] THEN

BEGIN
Retry := TRUE
OK := FALSE;

END
ELSE

BEGIN
Retry := FALSE;
OK := FALSE;
Close_it := FALSE;

END;
END;

END; {of case}
UNTIL NOT Retry;
IF Close_it THEN

Close (Output_File_Data);
IF OK THEN

BEGIN
Input_File_Name := Varying_Label2;

OPEN (FILE_VARIABLE
FILE_NAME
HISTORY
ACCESS_METHOD
ERROR

:= Output__File_Data,
:= Input_File_Name,
:= OLD,
:= Direct,
:= CONTINUE);

RESET (Output_File_Data, ERROR := CONTINUE);

END;

Output_File_Pointer := 1;
FIND (Output_File_Data, Output
READ (Output_File_Data, Logical
Logical_Record_Pointer:= 1;

END; {* OCG_Open_and_Check_GeoProgram_File *}

,_File__Pointer) ;
_Record);

70

PROCEDURE RIKE_Request_if_KGIS_Edit;

BEGIN
For i := 1 TO Clean_Scr DO

WRITELN (crlf);
WRITELN ('Do You Want to goto KGIS edit? (Y/N)');
READLN (Response);
IF (Response IN ['y', 'Y']) THEN

BEGIN
keditdrv (input, output);

END;
END; {* RIKE_Request_if_KGIS_Edit *>

PROCEDURE Get_First_Plot_Area;

VAR
i, j : INTEGER;

BEGIN
REPEAT

FIOF_Forward_In__Output_File (Plot_String, Nchar) ;
FOR i := 1 TO 10 DO
Check_String [i] := Plot_String [i] ;
IF Check_String = 'QUIT ' THEN Finished:= TRUE;

UNTIL ((CheckJString = 'CHANGE TO ') AND
(Plot_String [11] = 'P') AND
(Change_TO ('PLOT AREA'))) OR Finished;

IF finished THEN
BEGIN
OK := FALSE;
ERASCR_Erase_Screen;
WRITELN (' Finished found ');
WRITELN (SW_File,' Finished found ');
READLN;

END
ELSE

BEGIN
j := 20;
GV_Get_Value (j, Plot_String, i, r, Error);
First_PA := i;
CURPOS_Cursor_Position (16,3);
WRITELN ('Initial Plot Area : ', First_PA:l);
WRITELN

(SW_File,'Initial Plot Area : ', First_PA:l);
CPAM_Change_Plot_Area_Modify (First_PA);

END;
Finished := FALSE;

IF OK THEN
BEGIN

Output_File_Pointer := 1;

71

FIND (Output_File_Data, Out put_File__Po inter) ;
READ (Output_File_Data, Logical_Record);
Logical Record Pointer:= 1;~

REPEAT
FIOF_Forward_In_Output_Fil^ (Plot_String, Nchar);
FOR i := 1 TO 10 DO
CheckjString [i] := Plot String [i]

IF CheckjString = 'QUIT
Finished:= TRUE ;

UNTIL (Check_String = 'START
END;

END; {* Get First Plot Area *}

THEN

') OR Finished;

72

PROCEDURE Get_Max_And_Min (VAR loc: locationType);
VAR

k : INTEGER;

BEGIN
NChar := 0;
Look_Forward := TRUE;
S_X_Max := 1.0;
S_Y_Max := 1.0;
S_X_Min := 10000.0;
S_Y_Min := 10000.0;
Minimax := TRUE;
ERASCR_Erase_Screen;
SELGRA_Select_Graphics (' B ');
DBWIDT_Double_Width (2);
CURPOS_Cursor_Position (2,12);
WRITELN ('SEARCHING...');
SElAsC_Select_ASCII;
SELGRA_Select_Graphics ('O');
IC_INVISIBLE_CURSOR;
REPEAT

IF Look_Forward THEN
BEGIN

FIOF_Forward_In_Output_File (Plot_String, Nchar);
FOR i:= 1 TO 10 DO

Check_String [i] := Plot_String [i];
END;
CASE Check_String [1] OF

'C' : BEGIN
END ;

' ' : BEGIN

GV_Get_Value
(j, Plot_String, i, XYZ_Measured [1],
Error) ;

GV_Get_Value
(j, Plot_String, i, XYZ_Measured [2],
Error) ;

GV_Get_Value
(j, Plot_String, i, XYZ_Measured [3],
Error) ;

Translate_Coordinates (XYZ_Measured,
Error, loc);

END ;
'Q' : BEGIN

IF Check_String = 'QUIT
THEN Finished := TRUE ;

END ;
OTHERWISE ;

END ; {of case)
UNTIL Finished;
Finished := false;
ERASCR Erase Screen;

73

VC_Visible_Cursor;
DBWIDT_Double_Width (2);
CURPOS_Cursor_Position (2,7);
WRITELN ('FINAL MAX AND MIN VALUES');
WRITELN (SW_File, 'FINAL MAX AND MIN VALUES') ;
CURPOS_Cursor_Position (5,8);
WRITELN
('X MAX: ',S_X_Max:7:3, crlf);
WRITELN
(SW_File,'X MAX: ',S_X_Max:7:3, crlf);
CURPOS_Cursor_Position (5,45);
WRITELN (' X MIN: ',S_X_Min:7:3, crlLf) ;
WRITELN (SW_File,' X MIN: ',S_X_Min:7:3, crlf);
CURPOS_Cursor__Position (8,8) ;
WRITELN ('Y MAX: ',S_Y_Max:7:3, crlf);
WRITELN (SW__File,'Y MAX: ',S_Y_Max:7:3, crlf) ;
CURPOS_Cursor_Position (8,45);
WRITELN (' Y MIN: ',S_Y_Min:7:3, cr!
WRITELN (SW_File,' Y MIN: ',S_Y_Min :7:3, crlf);
CURPOS_Cursor_Position (24,50);
WRITELN ('RETURN TO Continue. . .') ;|
READLN;
IF OK THEN

BEGIN
RESET (Output_File_Data, ERROR := CONTINUE);
Output_File_Pointer := 1;
FIND (Output_File_Data, Output_File_Pointer);
READ (Output_File_Data, Logical_Record);
Logical_Record_Pointer:= 1;

REPEAT
FIOF_Forwar d__I n__Output_F i 1 e

(Plot_String, Nchar) ;
FOR i := 1 TO 10 DO

Check_String [i] := Plot_String [i];
IF Check__String = 'QUIT ' THEN

Finished := TRUE ;
UNTIL (Check_String = 'START ') OR Finished;

END; i
END; {* Get_Max_And__Min *}

74

PROCEDURE TCF__Trans_Coord_File;

BEGIN
CS__Capitalise_String (K_Name) ;
Slet_Blanks (K_Name, Varying_Label2);
SCREEN__WRITE_FILE := (Varying__Label2 + '.SWF');

OPEN (FILE_VARIABLE := SW_File,
FILE_NAME := screen__write_file ,
HISTORY := NEW,
ERROR := CONTINUE);

REWRITE (SW_File, ERROR := CONTINUE);
END; {* TCF_Trans_Coord_File *}

PROCEDURE TP_Transform_Param;

BEGIN
RLTA_Read_Line_Type_Array;
RSTA_Read_Symbol_Type_Array;
Get_First_Plot_Area;

END; {* TP_Transform_Param *}

75

PROCEDURE TGTK_Translate_GeoFile_To_K6lS;
VAR

k : INTEGER;

BEGIN
Pause
Location
Husk_Area
NChar
Count
Look_Forward
Minimax

= FALSE;
= terminate;
= 0;
= 0;
= 0.0 ;
= TRUE;
= FALSE;

IF db_opened (Kdb_Name, READ_WRITE, Err_Code) THEN
BEGIN

ERASCR_Erase_Screen ;
CURPOS_Cursor_Position (24 , 10) ;
WRITELN ('Starting Geo File spacial Data ' +

'Translation.', cirlf) ;
WRITELN (SW_File, 'Starting Geo File spacial' +

' Data Translation. . . . \ ' , crlf) ;
SKP_Setup_KGIS_Parameters ;
REPEAT

IF Look_Forward THEN
BEGIN

FIOF_Forward_In_Output_File (Plot_String,
Nchar) ;

FOR i:= 1 TO 10 DO
Check_String [i] := Piot_String [i];

END;
CASE Check_String [1] OF

'C' : BEGIN
Change_Mode ;

END;
' ' : BEGIN

J := 1;
GV_Get_Value
(j, Plot_String, i f Point_Buf fer[l] ,
Error) ;

GV_Get_Value
(j, Plot_String,
Error) ;
GVGetValue

Q'

_
(j, Plot_String,
Error) ;

END ;
BEGIN

IF Check_String

Point_Buffer[2],

Point_Buffer[3],

= 'QUIT THEN
Finished := TRUE;

END;
OTHERWISE;

END; (of case}
UNTIL Finished;

76

display_END;
IF NOT db_closed (Err_Code) THEN
BEGIN
WRITELN (Err_Code , crlf);
WRITELN (SW_File, Err_Code , crlf);

END;
END;

END; {* TGTK_JTranslate_GeoFile_To_KGIS *}

77

{**}
PROCEDURE Screen_l;
VAR

i : INTEGER;

BEGIN
ERASCR_Erase_J3creen;
IC_Invisible_cursor;
FOR i := 1 TO 24 DO

DBWIDT_Double_Width (i) ;
SELGRA_Select_Graphics ('O');
CURPOS_Cursor_Position (4,13);
WRITELN ('WELCOME TO');
CURPOS_Cursor_Position (7,13);
WRITELN ('GEOJTRANS:') ;
CURPOS_Cursor_Position (9,6);
WRITELN ('A TRANSLATION PROGRAM
CURPOS_Cursor_Position (11,6);
WRITELN ('GEOPROGRAM FILES');
CURPOS_Cursor__Position (13, 6) ;
WRITELN ('TO ORACLE RDB AND KORK')
CURPOS_Cursor_Position (15,6);
WRITELN ('GEOGRAPHIC INFORMATION SYSTEM ');
CURPOS_Cursor_Position (19,10);
WRITELN ('BY Steve Schilling');
SELSGR__Select__Special_Graphics ;
IC_Invisible_Cursor;
CURPOS_Cursor__Position (1,1);
WRITELN ('1');
FOR i := 2 TO 39 DO

BEGIN
CURPOS_Cursor_Pos ition (1,i);
WRITELN ('q');

END;
CURPOS_Cursor_Position (1,40);
WRITELN ('k');
FOR i := 2 TO 23 DO

BEGIN
CURPOS_Cursor__Position (i
WRITELN ('x');

END;
CURPOS_Cursor_Position (24,40);
WRITELN ('j') ;
FOR i := 39 DOWNTO 2 DO

BEGIN
CURPOS_Cursor_Position (24,i);
WRITELN ('q');

END;
CURPOS_Cursor_Position (24,1);
WRITELN ('m');
FOR i := 23 DOWNTO 2 DO
BEGIN

CURPOS_Cursor__Position (i, 1) ;
WRITELN ('x') ;

78

END;
SELGRA_Select_Graphics ('B');
CURPOS_Cursor_Position (22,9);
WRITELN (' RETURN TO CONTINUE.....');
SELASC_Select_ASCII;
READLN;
SIWIDT_Single_Width (24);
BELLRI_Bell_Ring;
VC_Visible_Cursor;
SELGRA_Select_Graphics ('O');

END; {* Screen_l *}

PROCEDURE Menu_l;

CONST
S_Top = 1;
S_Bottom =23;
S_Left = 1;
S_Right =79;

VAR
Direktion : CHAR;
Grafiks : CHAR;
i, j : INTEGER;

BEGIN
ERASCR_Erase_Screen;
Direktion := 'U';
CURPOS_Cursor_Position (SJTop,S_Left)
Grafiks := 'R';
SELGRA_Select_Graphics (Grafiks);
FOR i := S_Top TO S_Bottom DO

BEGIN
CURPOS_Cursor_Position (i,1);
WRITELN

crlf);
END;

CURPOS_Cursor_Position (S_Top,l);
WRITELN

t
crlf) ;

CURPOS_Cursor_Position (4,20);
WRITELN ('____________________________', crlf) ;
CURPOS_Cursor_Position (5,35);
WRITELN ('MENU', crlf);
CURPOS_Cursor_Pos it ion (7,20);
WRITELN ('TRANSLATE TO ORACLE RDBMS : 1 ', crlf);
CURPOS_Cursor_Position (9,20);
WRITELN ('TRANSLATE TO KGIS : 2 ', crlf);
CURPOS_Cursor_Position (11,20);

79

WRITELN ('QUIT : 3 ', crlf);
CURPOS_Cursor_Position (12,20);
WRITELN ('_______________________________', crlf);
CURPOS_Cursor_Pos it ion (S__BOTTOM, 1) ;

WRITELN
4

crlf);
IC_Invisible_cursor;
CURPOS_Cursor_Position (15,47);
WRITELN ('CHOICE: ');
READLN (I_Response);
Grafiks := 'O';
SELGRA_Select_Graphics (Grafiks);
CURPOS_Cursor_J?osition (S_Bottom,S|_Right) ;
VC_VISIBLE_CURSOR;
ERASCR_Erase_Screen;

END; {* Menu 1 *>

PROCEDURE OCKD_Open_and_Check_KGIS_Database;
VAR

Retry : BOOLEAN;

BEGIN
REPEAT

ERASCR_Erase_Screen;
CURPOS_Cursor_Position (5,10);
WRITELN ('Enter the KGIS database name: ');
READLN (Kdb_Name);
K_Name := Kdb_Name;
TCF_Trans_Coord_File;
WRITELN (SW_File,'Enter the KGIJS database name:
WRITELN (SW_File,Kdb_Name);
OK := FALSE;
Retry := FALSE;
CURPOS_Cursor_Position (20,20);
SELGRA_Select_Graphics ('B')
WRITELN ('PLEASE WAIT.....')
SELGRA_Select_Graphics ('O')

IF db_opened (Kdb_Name, READ_WRITE, Err_Code) THEN
BEGIN

IF NOT db_closed (Err_Code) THEN
BEGIN
WRITELN (Err_Code , crlf);
WRITELN (SW_File, Err_Code , crlf);
OK := FALSE;
Retry := FALSE;

END
ELSE

BEGIN
CURPOS_Cursor_Position (20,20);
WRITELN ('KGIS Database, OK ');

');

80

WRITELN (SW_File,'KGIS Database, OK ');
OK := TRUE;
Retry := FALSE;

END;
END

ELSE
BEGIN

ERASCR_Erase_Screen;
CURPOS_Cursor_Position (5,1);
WRITELN ('Could not find KGIS database : ',

Kdb_Name, crlf);
WRITELN ('Would you like TO enter file name' +

' again ? (Y/N) ');
READLN (Response);
WRITELN (SW_File,'Could not find KGIS ' +

'database : ', Kdb_Name, crlf);
WRITELN (SW_File,'Would you like TO enter file'+

'name again ? (Y/N) ');
WRITELN (SW_File,Response);
IF response IN ['Y', 'y'] THEN
Retry := TRUE

ELSE
BEGIN
Retry := FALSE;
OK := FALSE;

END;
END;

UNTIL NOT Retry;
END; {* OCKD_Open_and_Check_KGIS_Database *}

PROCEDURE FL_File_lister (which_file : string_20);
VAR

Close_It : BOOLEAN;

BEGIN
CS_Capitalise_String (Which_File);
Slet_Blanks (Which_File, Varying_Label2);

OPEN (FILE_VARIABLE :^= Output_File_Data,
FILE_NAME := Varying_Label2,
HISTORY := OLD,
ERROR := CONTINUE);

RESET (Output_File_Data, ERROR := CONTINUE);

CASE STATUS (Output_File_Data) OF
-1 : BEGIN

WRITELN ('FILE IS EMPTY');
WRITELN ('...Retry ? (Y/N) ');
READLN (Response);
IF Response IN ['Y', 'y'] THEN

Retry := TRUE

81

ELSE
Retry := FALSE?

OK := FALSE?
Close_it := TRUE?

END?
0 : BEGIN

CURPOS_Cursor_Positi9n (4,40)?
WRITELN ('OK, found file :',

Varying_Lalbel2, crlf) ?
WRITELN (SW_File, / OK, found file : ',

Varying_Label2, crlf)?
Retry := FALSE?
OK := TRUE?
Close_it := TRUE?

END?
OTHERWISE 1

BEGIN
WRITELN ('FILE NOT FOUND:::::> ' +

Varying_Latoel2)?
WRITELN ('...Retry ? (Y/N) ')?
READLN (Response)?
IF Response IN ['Y', 'y'] THEN

Retry := TRUE
ELSE

Retry := FALSE?
OK := FALSE?
Close_it := FALSE?

END?
END? {of case}

IF Close_it THEN
Close (Output_File_Data)?

END? {* FL_File_Lister *}
I************************************k*********************}
PROCEDURE Display_Files?
VAR

i,j : INTEGER?
Grafiks : CHAR?

BEGIN
ERASCR_Erase_Screen ?
Grafiks := 'R'?
SELGRA_Select_Graphics (Grafiks)?
FOR i := 1 TO 7 DO

FOR j := 43 TO 80 DO
BEGIN
CURPOS_Cursor_Position (i, j);
WRITELN (' ')?

END?
CURPOS_Cursor_Position (1,55)?
WRITELN ('FILE STATUS :')?
WRITELN (SW_File,'FILE STATUS :')?
CURPOS_Cursor_Position (2,45)?
WRITELN ('KGIS Database, ',Kdb_Nair(e,' : OK', crlf)?

82

WRITELN (SW_File,'KGIS Database, ',Kdb_Name,' : OK',
crlf);

CURPOS_Cursor_Position (3,45);
WRITELN ('LEGEND File, ',Leg_Name,' : OK', crlf);
WRITELN (SWJFile,'LEGEND File, ',Leg_Name,' : OK', crlf);
CURPOS_Cursor_Position (4,45);
WRITELN ('GeoProgram File, ',Varying_Label2,' : OK',

crlf) ;
WRITELN (SWJFile,'GeoProgram File, ',Varying_Label2,

' : OK', crlf);
CURPOS_Cursor_Position (5,45);
WRITELN ('Line Types File : OK ', crlf);
WRITELN (SWJFile,'Line Types File : OK ', crlf);
CURPOS_Cursor_Position (6,45) ;
WRITELN ('Symbol Types File : OK ', crlf);
WRITELN (SWJFile,'Symbol Types File : OK ', crlf);
Grafiks := 'O';
SELGRA_Select_Graphics (Grafiks);

END; {* Display_FILES *}

83

BEGIN
OPEN (OUTPUT, Carriage_Control := NONE,

Record_Length :± 512);
Dun := FALSE;
Screen_l;
REPEAT

SETSCR_Set_Scroll (1,24);
MENU_1;
CASE I_Response OF
1 : BEGIN

ERASCR_Erase_Screen;
CURPOS_Cursor_Position (5,10);
WRITELN
('Have you prepared an Oracle table?(y/n): ');
READLN (Response) ;
IF (Response IN ['y', 'Y']) THEN

BEGIN
PFOT_Planes_File_To_Oracle_Translator;

END
ELSE

BEGIN
END;

END;
2 : BEGIN

OCKD_Open_and_Check_KGIS_Database;
CURPOS_Cursor_Position (24,50);
WRITELN ('RETURN TO Continue...');
READLN;
IF OK THEN

BEGIN
ERASCR_Erase_Screen;
CURPOS_Cursor_Position (5,10);
WRITELN ('Enter name of legend file:' +

'[',Kdb_Na:!ne,'] ') ;
WRITELN (SW_File,'Enter name of legend'+

'file: [',Rib_Name,'] ');
READLN (Leg_Name);
WRITELN (SW_File, Leg_Name);
IF (Leg_Name = ") THEN
Leg_Name := Kdb_Name;

SELGRA_Select_Graphics ('O');
IC_Invisible_Cursor;
CURPOS_Cursor_Position (20,20);
WRITELN ('LEGEND File : OK');
WRITELN (SW_File,'LEGEND File : OK');
CURPOS_Cursor_Position (24,50);
WRITELN ('RETURN TO Continue...');
READLN;

END;
ERASCR Erase Screen;

84

IC__Invisible__Cursor;
IF OK THEN
BEGIN

OCG__Open__and__Check_GeoProgram_Fi le;
CURPOS__Cursor__Position (24,50);
WRITELN ('RETURN TO Continue...');
READLN;

END;
SELGRA__Select__Graphics ('O');
IF OK THEN
BEGIN

OCLT_Open_and__Check_JLine__Types;
OCST_Open__and__Check__Symbo l__Types ;
Display__FILES;
CURPOS__Cursor_Position (24,50);
WRITELN ('RETURN TO Continue...');
READLN;

END;
VC__Visible_Cursor;
ERASCR_Erase__Screen;
TP__Transf orm__Param;
Get__Max__And_Min (Loc__Buf) ;
IF OK THEN
BEGIN

TGTK__Translate__GeoFile__TO_KGIS;
Close (Output__File__Data) ;
ERASCR_Erase__Screen;
DBWIDT__Double__Width (7) ;
CURPOS_Cursor__Position (7,7) ;
WRITELN ('TRANSLATION COMPLETE', crlf);
WRITELN (SW_File,'TRANSLATION COMPLETE',

crlf);
CURPOS__Cursor__Position (24,50) ;
WRITELN ('RETURN TO Continue...');
READLN;
Close (SW__File) ;

END;
END;

3 : BEGIN
DBWIDT_Double_Width(7);
CURPOS__Cursor__Position (7,12) ;
WRITELN ('QUITTING......', crlf);
Dun := TRUE;

END;
END; {of case}

UNTIL Dun;
END.

irU.S. GOVERNMENT PRINTING OFFICE. 1991-834-788

85

The following number is for U.S. Department of Energy OCRWM management
purposes only and should not be used when ordering this publication.
NNA.910507.0002

86

